From Acute Pulmonary Embolism to Chronic Thromboembolic Disease Implications for follow-up after PE

Stavros V. Konstantinides, MD, PhD, FESC

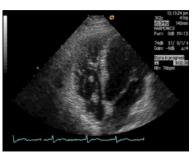
Medical Director, Center for Thrombosis und Hemostasis, University of Mainz, Germany

stavros.konstantinides@unimedizin-mainz.de

Professor of Cardiology

Democritus University of Thrace, Greece
skonst@med.duth.gr

Disclosures



- Lecture honoraria: Bayer AG, Boehringer Ingelheim, MSD,
 Pfizer Bristol-Myers Squibb, BTG Group, Servier
- Consultancy honoraria: Actelion, Bayer AG, Boehringer
 Ingelheim, Pfizer Bristol-Myers Squibb, Wyss Institute
- Institutional research support: Actelion, Bayer AG,
 Boehringer Ingelheim, Daiichi-Sankyo

Is CTEPH a complication of PE?

DVT

Embolus in transit

Acute PE

CTEPH

As many as 75% of patients with CTEPH report a history of previous symptomatic DVT or PE (data from 679 patients)

VTE a risk factor for CTEPH (?)

Inclusion of 687 patients (433 CTEPH, 254 non-thrombotic PH) at four European referral centers for CTEPH/PH between 1996 and 2007

Risk factor	Adjusted Odds ratio	95% CI, <i>p</i> value
Previous VTE	4.5	2.4–9.1; <i>p</i> <0.001
Recurrent VTE	14.5	5.4–43.1; <i>p</i> <0.001
Thyroid hormone replacement	6.1	2.7–15.1; <i>p</i> <0.001
Malignancy	3.8	1.5–10.4; <i>p</i> =0.005
Antiphospholipid antibodies / lupus anticoagulant	4.20	1.6–12.2; <i>p</i> =0.004
Ventriculo-atrial shunt or infected pacemaker	76.4	7.7–10350.6; <i>p</i> ≤0.001
Splenectomy	17.9	1.6–2438.1; <i>p</i> =0.017

Incomplete thrombus resolution after PE

Author	Patients	Design	Follow- up	Imaging method	Persistent thrombi
Cosmi (2011) ¹	173	Prospective	9 months	CT (n=80), Lung scan (n=93)	15% by CT 28% by lung scan
Sanchez (2010) ²	254	Prospective	12 months	Lung scan	29%
Nijkeuter (2006) ³	268	Meta- analysis	8 days – 6 months	Lung scan (2 studies: n=187) CT (2 studies: n=81)	Up to 65% after 3 months

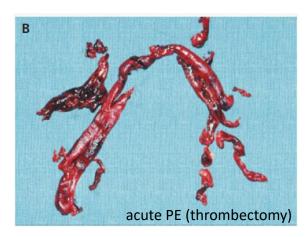
^{1.} Cosmi B et al. Intern Emerg Med 2011;6:521. 2. Sanchez O et al. J Thromb Haemost 2010;8:1248–55. 3. Nijkeuter M et al. Chest 2006; 129:192–7.

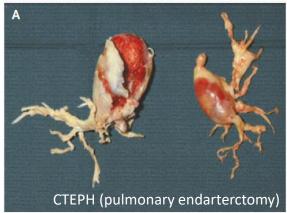
[Presumed] pathophysiology of CTEPH

Inadequate anticoagulation large thrombus mass

Infection and inflammation Immunity
Genetics
In situ
thrombosis

Acute PE

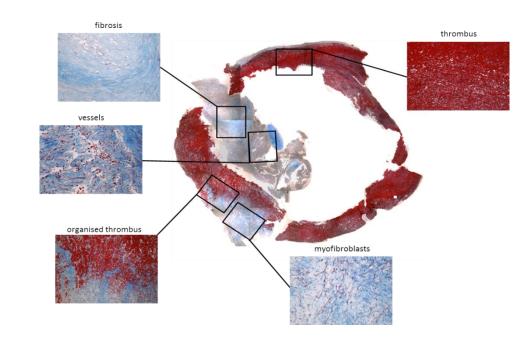

Incomplete resolution and organization of thrombus

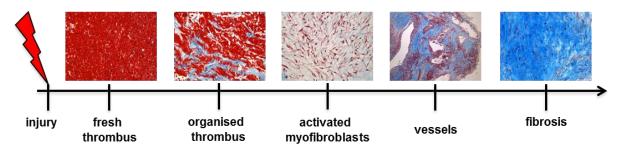

Lack of thrombus angiogenesis

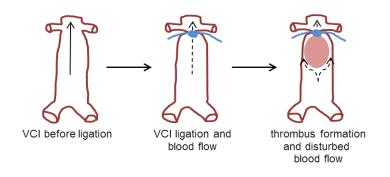
Development of fibrotic stenoses/occlusions

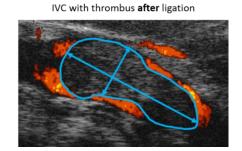
Remodelling of resistance vessels (shear stress)

Increase of PA pressure and PVR (CTEPH)

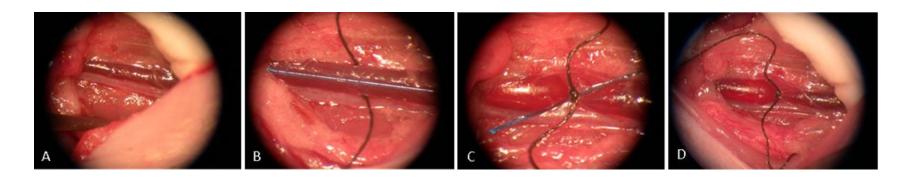



Histological classification of CTEPH specimens

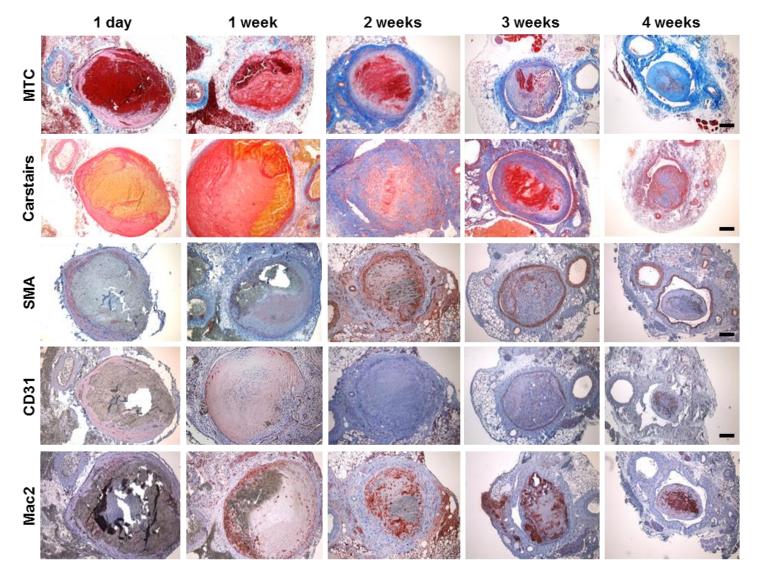

HISTOLOGICAL	SURGICAL CLASSIFICATION			
CLASSIFICATION	Type 1	Type 2	Type 3	
thrombus (%)*	83.3	50	25	
organised thrombus (%)*	66.7	50	41.7	
myofibroblasts (%)*	100	100	100	
vessels (%)*	83.3	100	66.7	
fibrosis (%)*	83.3	50	100	



Mouse model of venous thrombosis

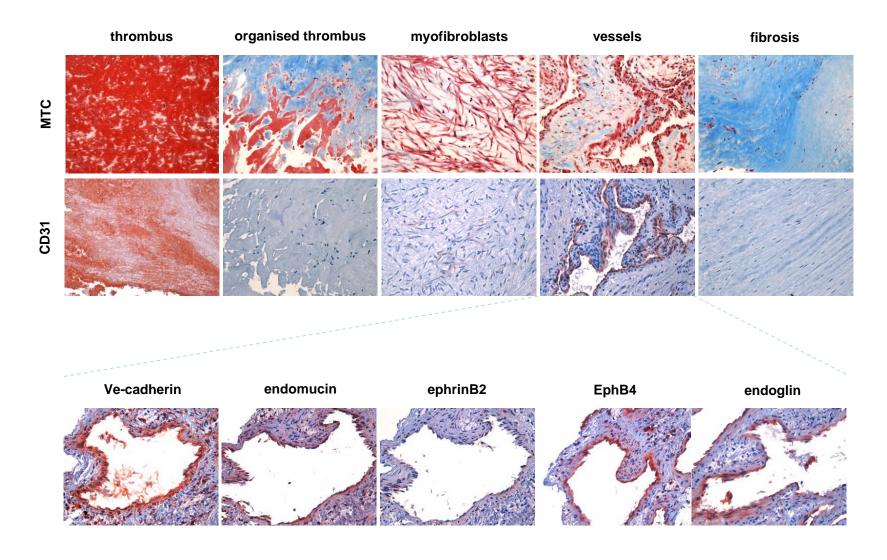


inferior Vena cava (IVC) before ligation



adapted after Diaz et al. 2012

Murine venous thrombus resolution



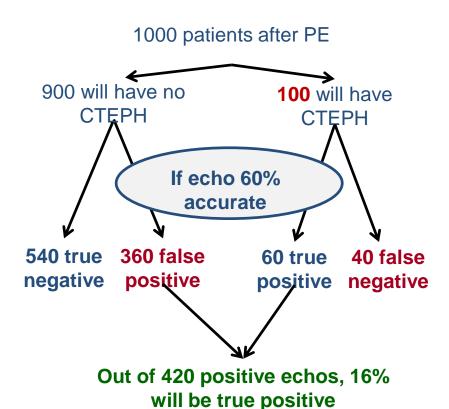
Bochenek ML et al. Thromb Haemost 2017; Feb 2. doi: 10.1160/TH16-10-0790. [Epub ahead of print]

Venous endothelium in human CTEPH specimens

ESC Guidelines 2014: Uncertainties on CTEPH

Recommendations	Class	Level
In PE survivors with persistent dyspnea, diagnostic evaluation for CTEPH should be considered	lla	С
Screening for CTEPH in asymptomatic survivors of PE is currently not recommended	III	С
It is recommended that, in all patients with CTEPH, the assessment of operability, and decisions regarding other treatment strategies, are made by a multidisciplinary team of experts	1	С
Life-long anticoagulation is recommended in all patients with CTEPH	1	С
Surgical PEA is recommended for patients with CTEPH		С
Riociguat is recommended in symptomatic patients who have been classified as having inoperable CTEPH by a CTEPH team, including at least one experienced PEA surgeon, or have persistent/recurrent CTEPH after surgical treatment	1	В
Off-label use of drugs approved for PAH may be considered in symptomatic patients who have been classified as having inoperable CTEPH by a CTEPH team, including at least one experienced PEA surgeon	IIb	В

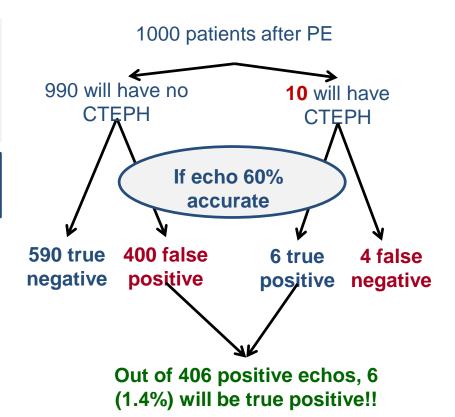
Incidence of CTEPH after acute PE: How frequent, 1% or 10%?


Study	Number of patients with acute PE	Average observation time (months)	Cumulative incidence of CTEPH (%)
Held M et al. BMC Pulmonary Medicine 2014;14:141	130	27	6.2
Guerin L et al. Thromb Haemost 2014;112:598-605	146	26	4.8
Korkmaz A et al. Clin Appl Thromb Hemost 2012;18:281–8	325	16	4.6
Otero R et al. Thromb Res 2011;127:303–8	744	14	8.3
Marti D et al. Arch Bronconeumol 2010;46:628–33	110	24	9.1
Klok FA et al. Haematologica 2010;95:970–5	877	34	0.57
Surie S et al. Thromb Res 2010;125:e202–5	110	36	2.7
Poli D et al. J Thromb Thrombolysis 2010;30:294–9	239	36	0.4
Sanchez O et al. Am J Resp Crit Care Med 2010;181: A1947	700	26	4.7
Dentali F et al. Thromb Res 2009;124:256–8	91	6-12	8.8
Becattini C et al. Chest 2006;130:172–5	259	46	1.0
Miniati M et al. Medicine (Baltimore) 2006;85:253–62	834	25	1.0
Pengo V et al. N Engl J Med 2004;350:2257–64	314	94	3.8
Ribeiro A et al. Circulation 1999;99:1325–30	78	12	5.0

CTEPH screening after PE?

The true incidence will determine the need

Scenario 1


Thomas Bayes (1702–1761)

CTEPH screening after PE?

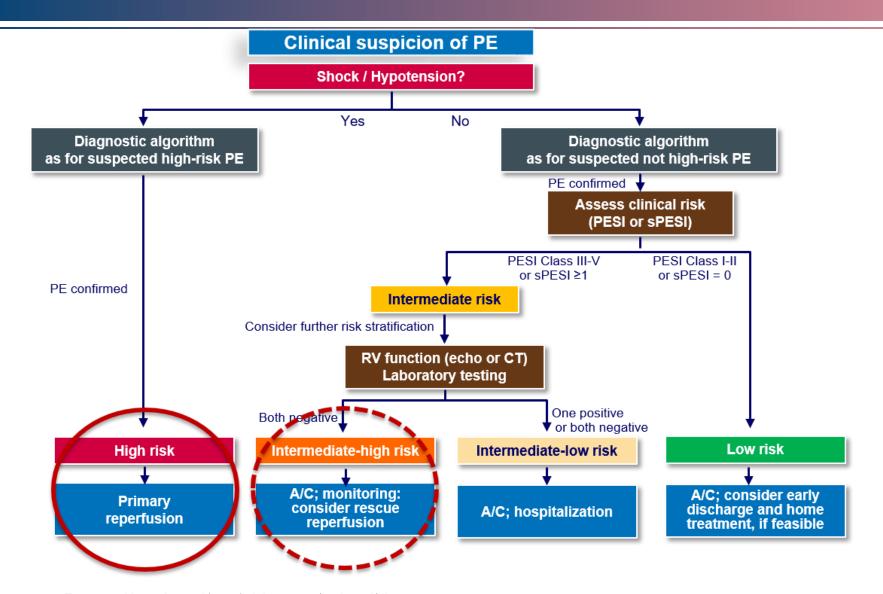
The true incidence will determine the need

Scenario 2

Thomas Bayes (1702–1761)

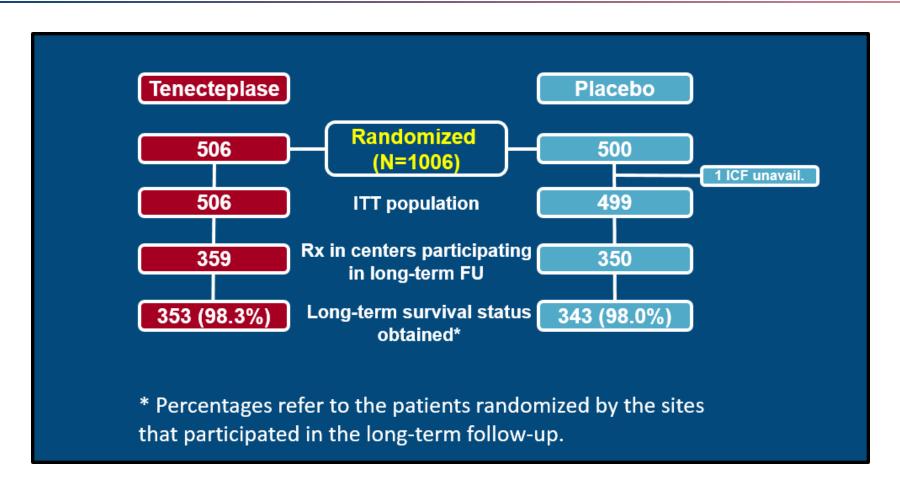
From acute PE to CTEPH: Key issues

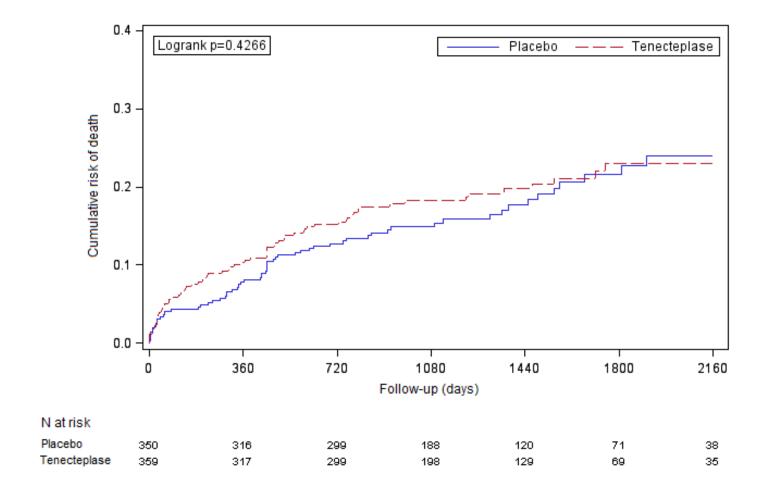
- Can early reperfusion therapy (and which type of it) prevent CTEPH development?
- Can indefinite anticoagulation after PE prevent CTEPH?
- Which clinical, laboratory, and hemodynamic criteria can be interpreted as predictors or prodromi of CTEPH?
- On which grounds should we select patients for regular follow-up and, possibly, CTEPH screening after PE?



Can We Prevent CTEPH After Acute PE?

Stavros Konstantinides, CTH Mainz


ESC 2014: Candidates for reperfusion in acute P. Emilion In acute


PEITHO: Long-term follow-up (2016)

PEITHO long-term FU (37.8 months [24.6.-54.8]): Probability of survival

Clinical and functional status after PE $(41.6\pm15.7 \text{ month FU})$

	Tenecteplase (n=175)	Placebo (n=183)	p value
Persisting clinical symptoms	63 (36.0%)	55 (30.1%)	0.23
Exertional dyspnea Exertional chest pain	55 4	50 0	

FU, follow-up.

PEITHO Steering Committee. J Am Coll Cardiol 2017;69:1536-44.

Echocardiographic parameters after PE $(41.6 \pm 15.7 \text{ month FU})$

	Tenecteplase (n=144)	Placebo (n=146)	p value
RVEDD >30 mm Missing data	34 (23.6%) 12 (8.3)	22 (15.1%) 11 (7.5)	0.058
RV/LV diameter ratio >0.9 Missing data	34 (23.6%) 12 (8.3%)	22 (15.1%) 11 (7.5)	0.834
TAPSE	, ,	, ,	
Reduced, no. (%)	14 (9.7%)	7 (4.8%)	0.107
Median (interquartile range), mmHg Missing data, no. (%)	24.0 (20.0–27.0) 19 (13.2)	24.0 (21.0–26.0) 18 (12.3)	0.551
TR jet velocity >2.6 m/s Missing data	22 (15.3%) 11 (7.6)	27 (18.5%) 14 (9.6)	0.412
Systolic PAP, mmHg Median (interquartile range) Missing data, no. (%)	30.0 (24.0–35.0) 33 (22.9)	30.0 (25.0–35.0) 39 (26.7)	0.527

PAP pulmonary artery pressure; RVEDD, right ventricular end-diastolic diameter, RV/LV, right/left ventricular; TAPSE, tricuspid annulus plane systolic

excursion; TR, tricuspid regurgitation.

PEITHO Steering Committee. J Am Coll Cardiol 2017;69:1536-44.

Possible CTEPH incidence after PE

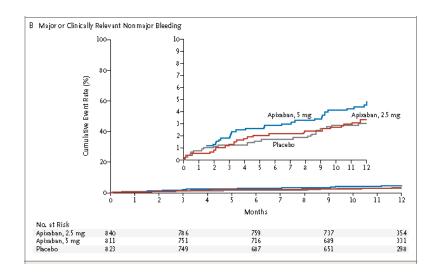
	Tenecteplase (n=190)	Placebo (n=186)	p value
CTEPH confirmed	4 (2.1%)	6 (3.2%)	0.79

PEITHO Steering Committee. J Am Coll Cardiol 2017;69:1536–44.

VTE recurrence: substantial, decreasing over time of the Thrombose and Hamostase

Cohort data 1980s -1990s	Cumulative incidence	Projected annual incidence rate
2 weeks	2%	55%
3 months	6,4%	30%
6 months	8%	18%
2 years	17%	8,5%
5 years	24%	4,8%
8 years	30%	3,8%

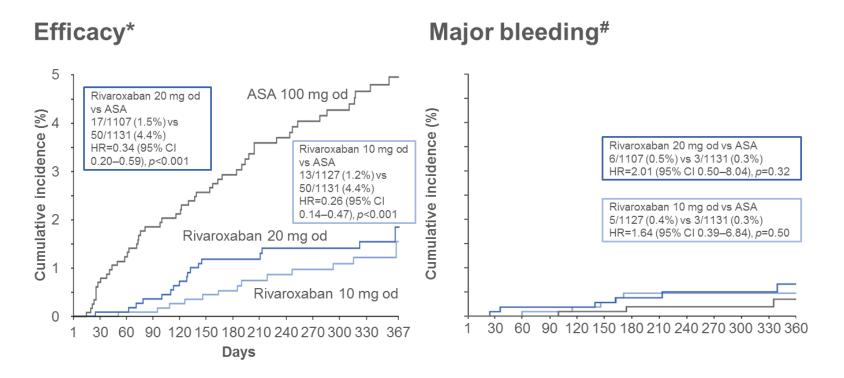
Prandoni P. Haematologica 1997; 82: 423-428


Prandoni P. Ann Intern Med 1996;125:1-7

Extended prophylaxis with low-dose NOAC

AMPLIFY-EXT

- Two doses of apixaban (2.5 mg and 5 mg, twice daily) versus placebo
- Pts with VTE who had completed 6-12 months of anticoagulation
- study drugs given for 12 months
- 2482 pts included in ITT
- Primary EP: 8.8% in placebo
 vs. 1.7% in EACH apixaban
 dose



Major / CRNM bleeding: 2.7% vs. 3.2% (2.5 mg) vs. 4.3% (5 mg)

Extended prophylaxis with low-dose NOAC

EINSTEIN-Choice

^{*}Intention-to-treat analysis; #safety analysis; ‡no events after Day 360 up to Day 480 Weitz JI *et al, N Engl J Med* 2017:doi:10.1056/NEJMoa1700518

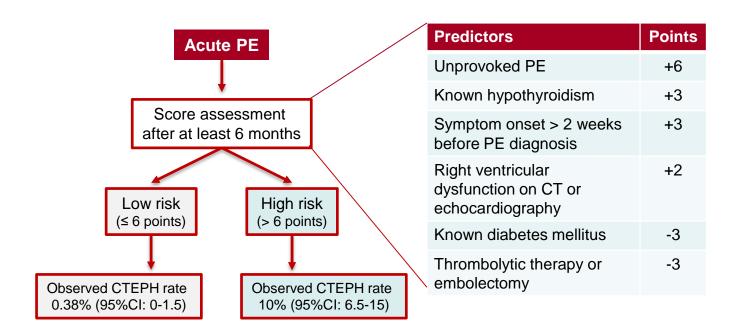
Remaining challenges in anticoagulation: For whom half dose, for whom full dose?

Early recurrence¹

- Poor quality of anticoagulation (failure to achieve therapeutic aPTT and INR)
- Cancer

Late recurrence^{2,3}

Strong established factors


- Unprovoked (vs provoked)
 VTE
- More than one VTE event
- On-going hormonal therapy
- Elevated D-dimer levels after/during VKA treatment

Weaker/controversial factors

- Male sex
- Location: PE/proximal DVT vs distal DVT
- Age
- Family history of VTE
- Obesity (increased BMI)
- Cancer
- Antiphospholipid syndrome
 - Hereditary thrombophilia

Clinical prediction scores for CTEPH Derivation and validation studies

Derivation cohort of 772 patients with acute PE from 3 centers (overall CTEPH rate 2.8%)

Structured follow-up after acute PE: A multicenter prospective cohort study

Study objectives	To determine, over a 2-year follow-up period, the incidence of CTEPH or post-PE impairment after an index episode of acute PE
Co-primary outcomes	 Confirmed diagnosis of CTEPH at any time during 2-year follow-up 'Post-PE impairment' at ≥1 FU visit: deterioration (compared with the previous visit or findings at discharge) by at least one category in ≥1 of 'a' (echocardiographic) parameters plus deterioration in ≥1 of 'b' (clinical, functional or laboratory) parameters
Number of patients/sites	1000/15
Estimated FPI/LPO	June 2014 – end 2018

FPI/LPO, first patient in, last patient out.

German Clinical Trials registry: DRKS00005939. Konstantinides SV et al. J Thromb Thrombol 2016;42:600-9.

Structured follow-up after acute PE: A multicenter prospective cohort study

Echocardiographic parameters of *post-PE impairment* between 2 visits (≥1 present):

Para	ameter	Classification
a1	RV basal diameter	≤4.2 cm <i>v</i> s >4.2 cm
a2	Right atrial (RA) end-systolic area	≤18 cm ² vs >18 cm ²
a3	TAPSE	≤1.5 cm <i>v</i> s >1.5 cm
a4	Eccentricity index of the left ventricle	≤1.0 <i>vs</i> >1.0
a5	Estimated RA pressure	Normal vs intermediate vs high (based on inferior vena cava diameter and collapse with sniff)
a6	Tricuspid regurgitant (TR) velocity	<2.8 m/s vs 2.9–3.4 m/s vs >3.4 m/s
a7	Pericardial effusion	No vs yes

German Clinical Trials registry: DRKS00005939. FOCUS Steering Committee. J Thromb Thrombol 2016;42:600-9.

Structured follow-up after acute PE: A multicenter prospective cohort study

Para	meter	Classification
b1	Clinical evidence of RV failure	No vs yes
b2	Rate of progression of symptoms	Slow (or none) vs rapid
b3	Syncope	No vs yes
b4	WHO functional class	I or II vs III or IV
b5	Cardiopulmonary exercise testing	Normal <i>vs</i> moderate <i>vs</i> severe impairment based on peak O ₂ uptake and systolic BP
b6	Six-minute walking distance	>500 m vs 300-500 m vs <300 m
b7	BNP or NT-proBNP plasma levels	Normal or near-normal vs moderately elevated vs high

BNP, brain natriuretic peptide; NT-proBNP, N-terminal prohormone of brain natriuretic peptide. German Clinical Trials registry: DRKS00005939. FOCUS Steering Committee. *J Thromb Thrombol* 2016;42:600–9.

Systematic long-term follow-up after PE: Rationale for defining post-PE impairment

Determinants of prognosis ^a (estimated I-year mortality)	Low risk <5%	Intermediate risk 5–10%	High risk >10%	
Clinical signs of right heart failure	Absent	Absent	Present	
Progression of symptoms	No	Slow	Rapid	
Syncope	No	Occasional syncope ^b	Repeated syncope ^c	
WHO functional class	I, II	III	IV	
6MWD	>440 m	165 <u>–44</u> 0 m	<165 m	
Cardiopulmonary exercise testing	Peak VO ₂ > 15 ml/min/kg (>65 % pred.) VE/VCO ₂ slope <36	Peak VO ₂ 11–15 ml/min/kg (35–65% pred.) VE/VCO ₂ slope 36–44.9	Peak VO ₂ < LL ml/min/kg (<35 % pred.) VE/VCO ₂ ≥45	
NT-proBNP plasma levels	BNP <50 ng/l NT-proBNP <300 ng/ml	BNP 50-300 ng/l NT-proBNP 300-1400 ng/l	BNP >300 ng/l NT-proBNP >1400 ng/l	
Imaging (echocardiography, CMR imaging)	RA area <18 cm² No pericardial effusion	RA area 18–26 cm² No or minimal, pericardial effusion	RA area >26 cm² Pericardial effusion	
Haemodynamics	RAP <8 mmHg CI ≥2.5 l/min/m² SvO ₂ >65 %	RAP 8–14 mmHg CI 2.0–2.4 l/min/m² SvO ₂ 60–65%	RAP > 14 mmHg CI < 2.0 l/min/m ² SvO ₂ < 60 %	

6MWD, 6-minute walking distance; CI, cardiac index; CMR, cardiac magnetic resonance; RAP, right atrial pressure; SVO₂, mixed venous oxygen saturation; VE/VCO₂, ventilatory equivalents for carbon dioxide; VO₂, oxygen consumption. Galiè N *et al. Eur Heart J* 2016;37:67–119.

Long-term follow-up after PE: CTEPH and 'prodromi' - preliminary data

	Tenecteplase (n=190)	Placebo (n=186)	p value
'Post-PE impairment'	16 (15.5%)	13 (13.4%)	0.67

The PEITHO Investigators. Unpublished data.

PE follow-up protocol at Mainz University 2017 Centrum für Thrombose und Hämostase

	Baseline	Discharge	3 months	12 months	24 months
Enrollment – informed consent	Χ				
Medical history	X				
Demographic data	X				
Clinical examination	X		Χ	X	X
Confirmation of pulmonary embolism (imaging)	Χ				
Echocardiography	Χ	Χ	Χ	Χ	Χ
Cardiopulmonary exercise testing			Χ	X	X
Laboratory diagnostic and safety tests	X		Χ	Χ	Χ
Hemodynamic collapse		Χ			
Death		X	Χ	X	X
Rehospitalization			X	X	X
Stroke		X	X	X	X
Symptomatic recurrent DVT/PE		X	X	X	X
Major bleeding/clinically relevant non-major bleeding		X	X	X	X
Functional status			Χ	Χ	Χ
Diagnostic work-up for CTEPH			Χ	Χ	Χ
Generic quality of life (EQ-5D questionnaire)			Χ	X	Х
Disease-specific quality of life (PEmb-QoL questionnaire)			Х	X	X

General recommendations on FU after PE in 2017

Recommendations	Class	Level
In PE survivors with persistent dyspnea, diagnostic evaluation for CTEPH should be considered	lla	С
Screening for CTEPH in asymptomatic survivors of PE is currently not recommended	101	С
It is recommended that, in all patients with CTEPH, the assessment of operability, and decisions regarding other treatment strategies, are made by a multidisciplinary team of experts	1	С
Life-long anticoagulation is recommended in all patients with CTEPH	1	C
Surgical PEA is recommended for patients with CTEPH		C
Riociguat is recommended in symptomatic patients who have been classified as having inoperable CTEPH by a CTEPH team, including at least one experienced PEA surgeon, or have persistent/recurrent CTEPH after surgical treatment	1	В
Off-label use of drugs approved for PAH may be considered in symptomatic patients who have been classified as having inoperable CTEPH by a CTEPH team, including at least one experienced PEA surgeon	IIb	В

From acute PE to CTEPH: Where do we stand in 2017?

- Ongoing studies in animal models help to dissect the mechanisms mediating transition from acute PE to chronic 'venous' thrombosis and CTEPH.
- Early reperfusion therapy appears unable to prevent CTEPH development.
- Prevention of CTEPH is not, at present, an argument for indefinitely continuing anticoagulation after PE.
- Large prospective cohort studies with systematic follow-up and biobanking after PE may help determine which baseline or follow-up parameters may be predictors or prodromi of CTEPH, and possibly help to select patients for CTEPH screening after PE.

