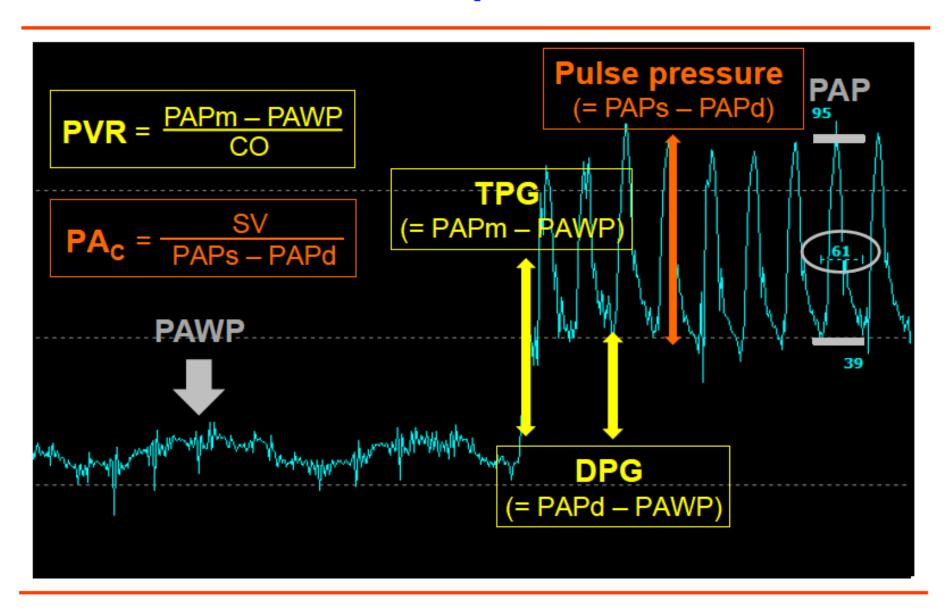


Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Α΄ Καρδιολογική Κλινική ΑΧΕΠΑ Ιατρείο Πνευμονικής Υπέρτασης

Πνευμονική υπέρταση στην αριστερή καρδιακή νόσο

George Giannakoulas


Ass. Professor in Cardiology
Aristotle University of Thessaloniki

Conflicts of interest

Honoraria for lectures or Advisory boards: MSD,
 GlaxoSmithKline, Actelion Pharmaceuticals Ltd, Bayer
 Healthcare, Servier, Pfizer, Lilly, ELPEN, Novartis, United
 Therapeutics

Calculated parameters

Haemodynamic definitions of group 2 PH: Isolated post capillary vs combined post and precapillary

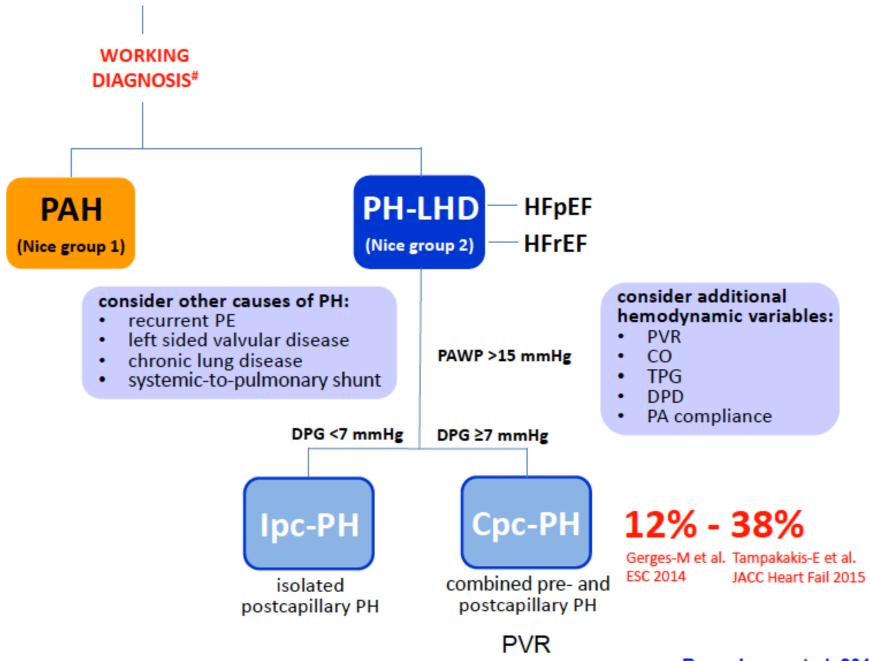
Debate and controversy on which variable would be best

- 1) As a marker of pulmonary vascular disease and
- To predict outcome

Definition	Characteristics ^a	Clinical group(s)b
PH	PAPm ≥25 mmHg	All

Post-capillary PH	PAPm ≥25 mmHg PAWP >15 mmHg	2. PH due to left heart disease
Isolated post-capillary PH (Ipc-PH) Combined post-capillary and pre-capillary PH (Cpc-PH)	DPG <7 mmHg and/or PVR ≤3 WU ^c DPG ≥7 mmHg and/or PVR >3 WU ^c	5. PH with unclear and/or multifactorial mechanisms

CO = cardiac output; DPG = diastolic pressure gradient (diastolic PAP - mean PAWP); mPAP = mean pulmonary arterial pressure; PAWP = pulmonary arterial wedge pressure; PH = pulmonary hypertension; PVR = pulmonary vascular resistance; WU = Wood units.



^{&#}x27;All values measured at rest; see also section 7.

^{*}According to Table 4.

[&]quot;Wood Units are preferred to dynes.s.cm.".

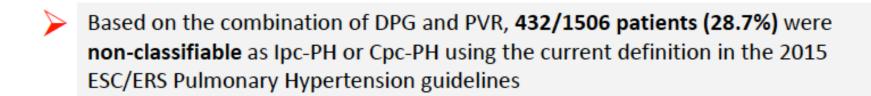
Rosenkranz et al. 2015

ESC/ERS 2015: Hemodynamic Definitions of Pulmonary Hypertension

Definition	Characteristics ^a	Clinical group(s) ^b
PH	PAPm ≥25 mmHg	All
Pre-capillary PH	PAPm ≥25 mmHg PAWP ≤15 mmHg	Pulmonary arterial hypertension PH due to lung diseases Chronic thromboembolic PH PH with unclear and/or multifactorial mechanisms
Post-capillary PH Isolated post-capillary PH (Ipc-PH) Combined post-capillary and pre-capillary PH (Cpc-PH)	PAPm ≥25 mmHg PAWP > 15 mmHg DPG <7 mmHg and/or PVR ≤3 WU ^c DPG ≥7 mmHg and/or PVR >3 WU ^c	PH due to left heart disease S. PH with unclear and/or multifactorial mechanisms

CO = cardiac output; DPG = diastolic pressure gradient (diastolic PAP - mean PAWP); mPAP = mean pulmonary arterial pressure; PAWP = pulmonary arterial wedge pressure; PH = pulmonary hypertension; PVR = pulmonary vascular resistance; WU = Wood units.

^aAll values measured at rest; see also section 8.0.

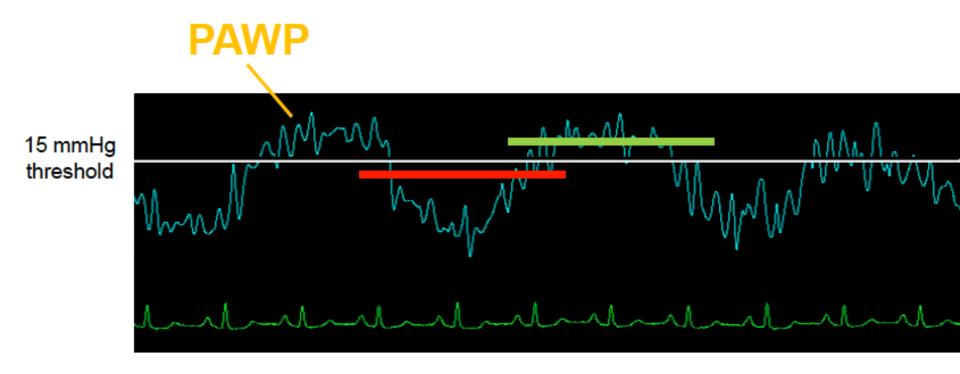

^bAccording to Table 4.

Wood Units are preferred to dynes.s.cm⁻⁵.

ESC/ERS 2015: Hemodynamic Definitions of Pulmonary Hypertension

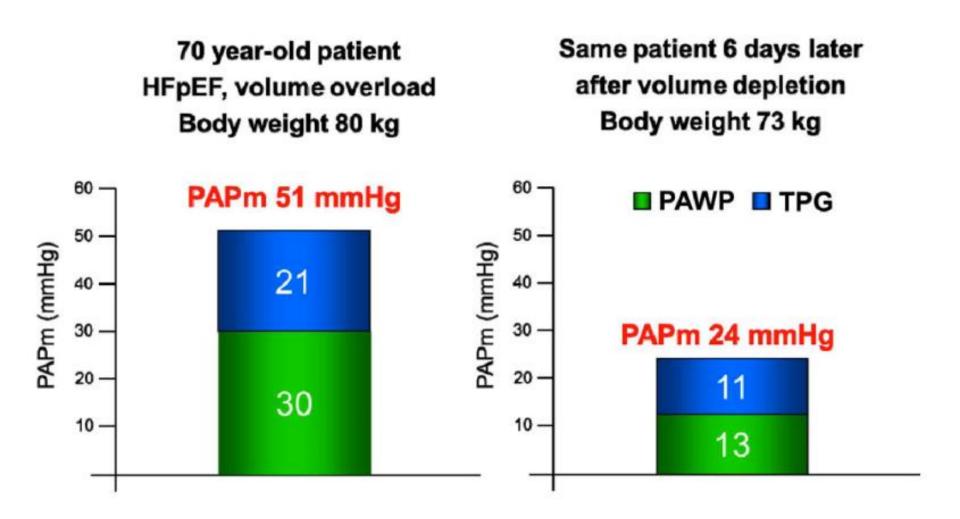
- Patients with PH-LHD from a tertiary center
- n=1506; PAPm ≥25 mmHg, PAWP >15 mmHg
- Stratified by DPG (< / \geq 7 mmHg) and PVR (\leq /> 3 WU)

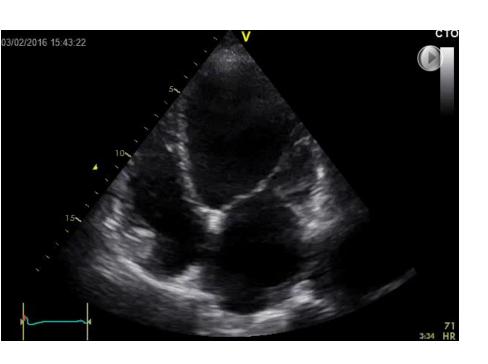
	DPG <7 mmHg	DPG ≥7 mmHg		
PVR ≤3 WU n (%)	858 (57.0) #	44 (2.9)		
PVR >3 WU n (%)	388 (25.8)	216 (14.3)¶		



- n=76 $Ees/Ea = 1.4\pm0.3$
- RV/PA coupling:DPG <7 mmHg, PVR > 3 WUDPG ≥ 7 mmHg, PVR > 3 WU Ees/Ea = 1.1 ± 0.3 (p<0.001) n=41

Hemodynamic assessment Gaps in evidence / standardization


Where to read PAPm and PAWP?


The same patient – PH referral center A: PAH

PH referral center B: PH-LHD

Differentiating between pre- and post-capillary PH: The impact of diuretics.....

HFrEF

Independent and Additive Prognostic Value of Right Ventricular Systolic Function and Pulmonary Artery Pressure in Patients With Chronic Heart Failure

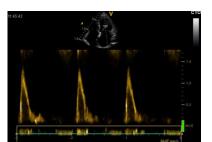
Stefano Ghio, MD, FESC,* Antonello Gavazzi, MD, FESC,* Carlo Campana, MD,* Corinna Inserra, MD,* Catherine Klersy, MD,† Roberta Sebastiani, MD,* Eloisa Arbustini, MD,‡ Franco Recusani, MD,* Luigi Tavazzi, MD, FESC, FACC*

Pavia, Italy

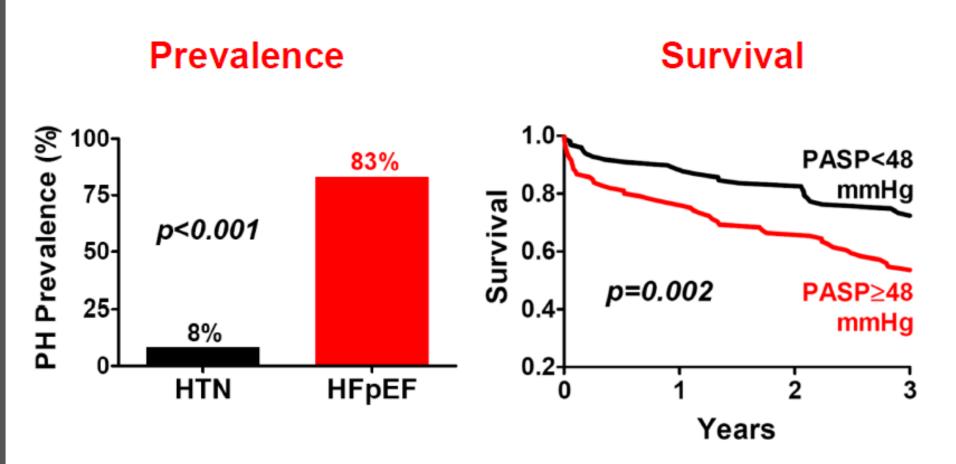
(J Am Coll Cardiol 2001;37:183-8)

- Patients candidates to heart transplantation
- Large population
- Extensive diagnostic work-up
 - Hemodynamic
 - Right ventricular function

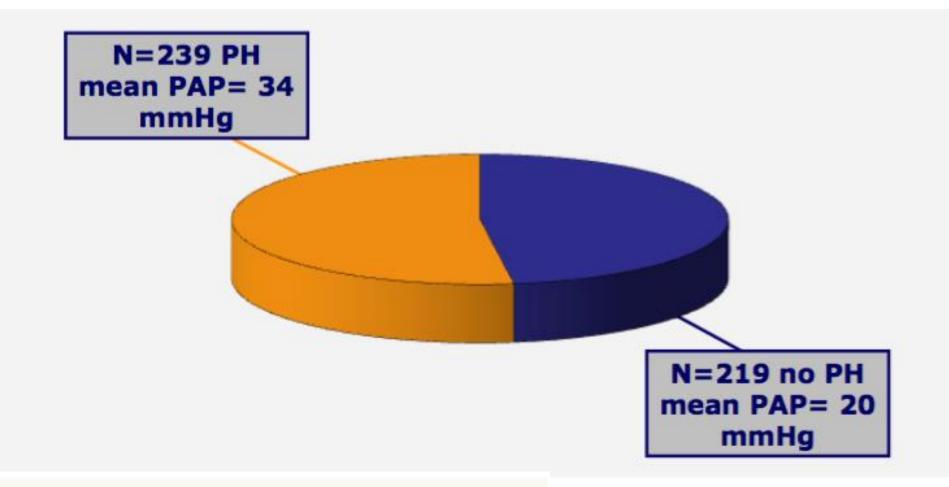
Prognostic determinants of survival


Hazards Ratio	95% Confidence Interval	P Value
1.26	1.10-1.46	0.001
2.7	1.4-5.1	0.003
1.20	1.04-1.40	0.013
1.10	1.0-1.21	0.047
	1.26 2.7 1.20	Hazards Confidence Interval 1.26 1.10-1.46 2.7 1.4-5.1 1.20 1.04-1.40

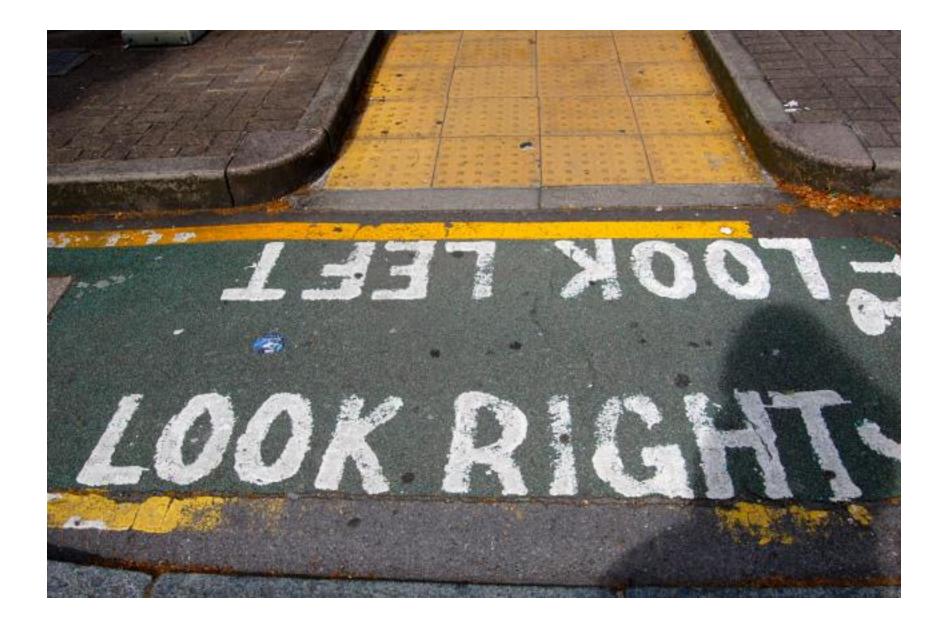
HFpEF



74 year-old lady with chronic Afib RVSP=38mmHg


62 year-old lady with chronic Afib RVSP=78mmHg Negative V/Q scan Normal lung function

Epidemiology and Prognostic Impact of PH in Diastolic Heart Failure



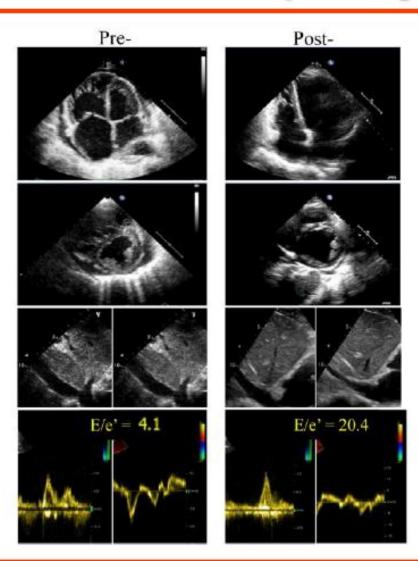
HFpEF: PASP > 35 mmHg present in 83% (median PASP 48 mmHg)
PVH does not fully account for the severity of PH in HFpEF

Emerging concepts in PH HFpEF. Prevalence by RHC

- 455 HFpEF patients studied
- mPAP determined by right heart cath.

Importance of "phenotyping" Examples of key factors suggestive of Group 2 PH

Clinical presentation	Echocardiography	Other features		
Age >65 years	Structural left heart abnormality Disease of left heart valves LA enlargement (>4.2 cm) Bowing of the IAS to the right LV dysfunction Concentric LV hypertrophy and/or increased LV mass	ECG • LVH and/or LAH • AF/Afib • LBBB • Presence of Q waves		
Symptoms of left heart failure	Doppler indices of increased filling pressures • Increased E/e' • >Type 2–3 mitral flow abnormality	Other imaging • Kerley B lines • Pleural effusion • Pulmonary oedema • LA enlargement		
Features of metabolic syndrome	Absence of RV dysfunction Mid systolic notching of the PA flow Pericardial effusion			
History of heart disease (past or current)				
Persistent atrial fibrillation				

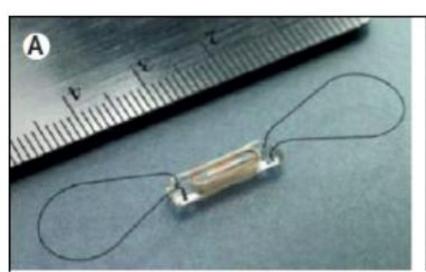

Echocardiographic Prediction of Pre-Versus Postcapillary PH

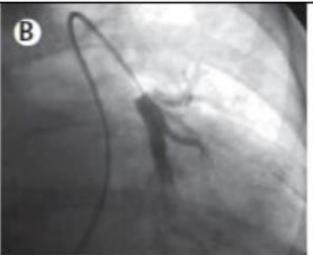
Right > left heart chambers; RV forming heart apex

LV EI ≥1.2

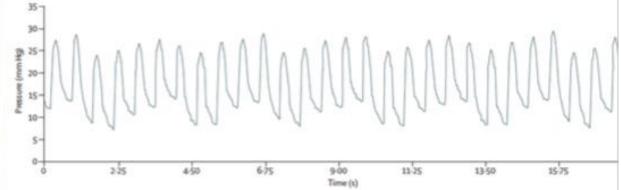
Dilated and fixed IVC

E/e' ratio <10

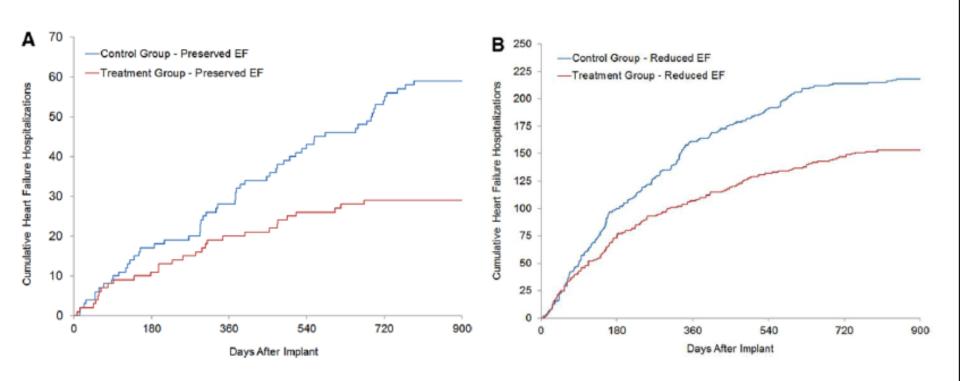

Left > right heart chambers; LV forming heart apex

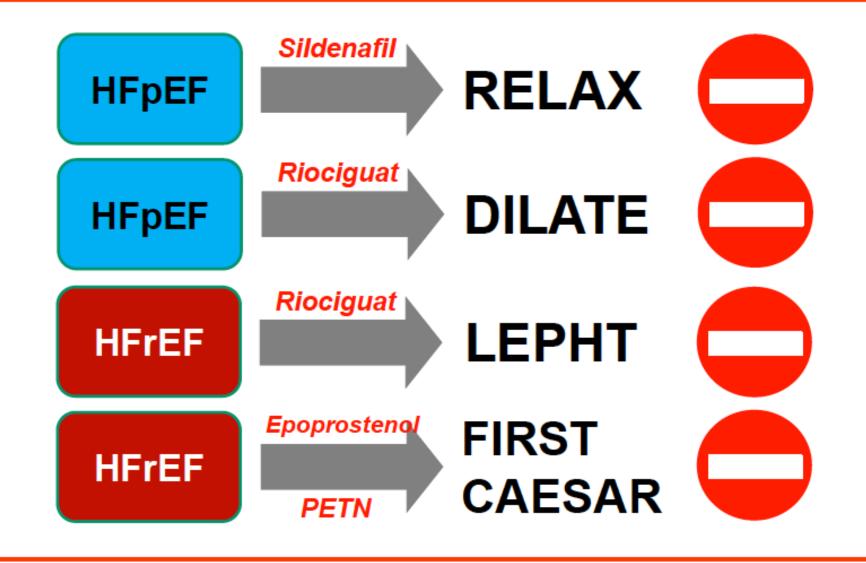

LV EI <1.2

Normal and collapsible IVC


E/e' ratio >10

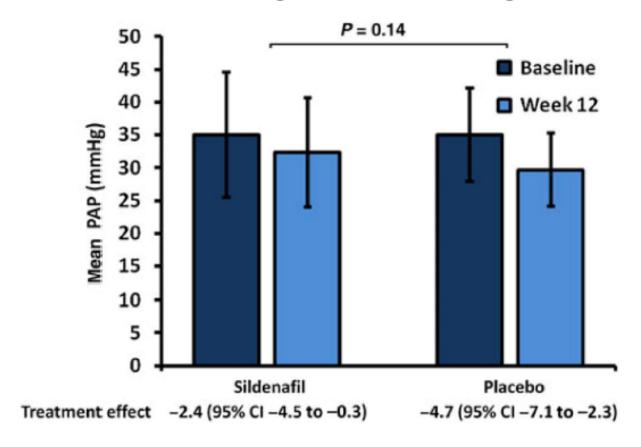
Wireless pulmonary artery haemodynamic monitoring in CHF: a randomised controlled trial



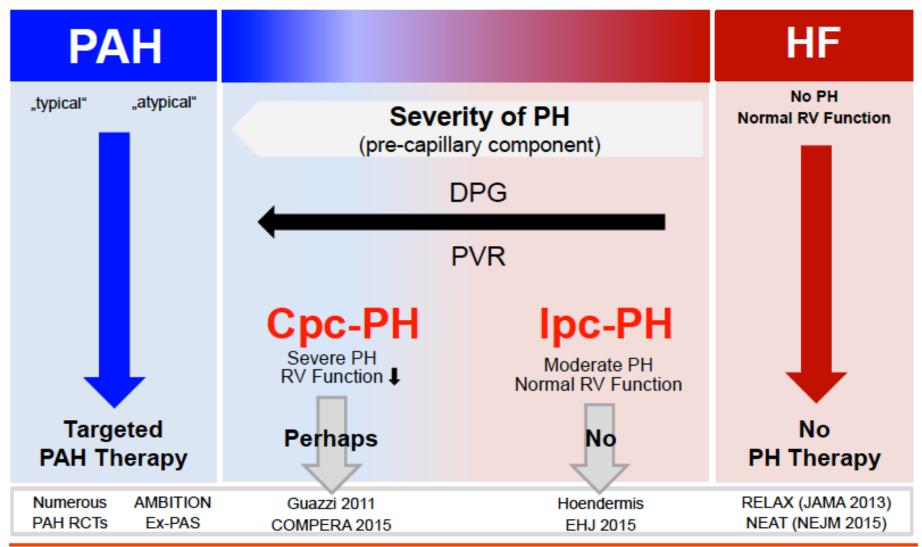


Wireless PAP Monitoring in HFpEF: Guidance to Reduce Decompensation

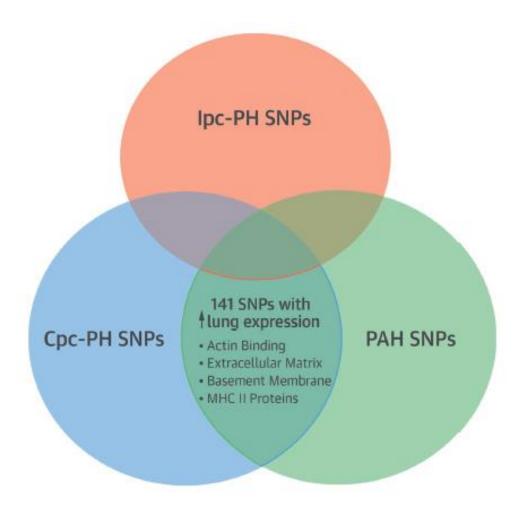
- CardioMEMS Heart Sensor
- Hemodynamically guided HF management vs. standard of care
- HFpEF patients: Hospitalizations 50% lower after 17.6 months
- · Response to elevated PAP: more diuretics and vasodilator therapies



Recent Trials in Heart Failure and PH



Sildenafil in Patients with HFpEF and Ipc-PH


A double-blind, randomized controlled Study (n=52) (HFpEF, PH, mean PAPm 35 mHg, mean DPG 1 mmHg, mean PVR 2.4 WU)

PAH vs. PH in Heart Failure: Spectrum of Phenotypes and Therapeutic Consequences

Genetic similarities

Macitentan in pulmonary hypertension due to left ventricular dysfunction

Total

Subjects n	31	32	63			
NYHA functional class n (%)						
II	5 (16.1)	10 (31.3)	15 (23.8)			
III	26 (83.9)	22 (68.8)	48 (76.2)			
Median (IQR) 6MWD m	300 (216-435)	305 (207-380)	300 (215-410)			
Median (IQR) NT-proBNP pg·mL ⁻¹	1458 (830-2700)	1756 (992-3503)	1515 (959-2921)			
Median (IQR) pulse rate [#] beats⋅min ⁻¹	80.0 (71.0-84.0)	74.5 (62.0-82.0)	77.0 (67.0-84.0)			
Median (IQR) blood pressure [¶] mmHg						
Systolic blood pressure	129.0 (120.0-138.0)	133.0 (119.0-147.5)	130.0 (120.0-140.0)			
Diastolic blood pressure	77.0 (70.0-87.0)	72.0 (69.0-80.0)	75.0 (70.0-83.0)			
Median (IQR) haemodynamic parameters	5			1	1	
PVR dyn·s·cm ⁻⁵	450.0 (296.0-590.0)	483.5 (362.0-738.5)	462.0 (341.0-695.0)			
mPAP mmHg	44.0 (40.0-54.0)	48.5 (38.5-53.5)	47.0 (40.0-54.0)			
mRAP mmHg	13.0 (10.0-17.0)	12.5 (10.0–16.5)	13.0 (10.0–17.0)			
PAWP mmHg	20.0 (18.0-21.0)	20.0 (16.0-23.0)	20.0 (17.0-22.0)			
TPR dyn⋅s⋅cm ⁻⁵	762.0 (571.0-1143.0)	882.5 (664.5-1191.0)	813.0 (591.0-1158.0)			
Cardiac index L·min ⁻¹ ·m ⁻²	2.40 (2.10-3.00)	2.20 (1.90-2.60)	2.35 (1.90-2.70)			
Cardiac output L·min ⁻¹	4.90 (3.70-5.80)	4.15 (3.80-5.05)	4.60 (3.70-5.60)			
TPG mmHg	27.0 (21.0-33.0)	27.5 (21.5-33.5)	27.0 (21.0-33.0)			
DPG mmHg	10.0 (8.0-15.0)	10.0 (8.0-13.5)	10.0 (8.0-14.0)			
Mixed venous oxygen saturation %	72.0 (61.0-73.0)	61.0 (49.0-65.0)	64.5 (59.0-72.0)			
				Macitentan	Macitentan Placebo	Macitentan Placebo Treatment effe
						(95% CI)#
Subjects n				31	31 32	31 32

Placebo

Macitentan

Significant fluid retention or worsening in NYHA functional class from baseline*

Increased body weight from baseline by ≥5% or ≥5 kg due to fluid overload

Significant fluid retention

Parenteral administration of diuretics

Worsening in NYHA functional class from baseline[§]

10.08 (-15.07 to 33.26)

13.21 (-11.96 to 36.21)

7 [22.6]

7 (22.6)

3 (9.7)

5 (16.1)

1 (3.2)

4 (12.5)

3 [9.4]

0 (0)

3 [9.4]

2 [6.3]

p-value¹¹

0.34

0.18

Pulmonary Hypertension Phenotypes: "Typical" and "atypical" IPAH versus CpcPH-HFpEF

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

© 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. PUBLISHED BY ELSEVIER. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

VOL. 68, NO. 4, 2016 ISSN "0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2016.05.047

Pre-Capillary, Combined, and Post-Capillary Pulmonary Hypertension

A Pathophysiological Continuum

Christian F. Opitz, MD,^{a,b} Marius M. Hoeper, MD,^c J. Simon R. Gibbs, MD,^d Harald Kaemmerer, MD, VMD,^e Joanna Pepke-Zaba, MD,^f J. Gerry Coghlan, MD,^g Laura Scelsi, MD,^h Michele D'Alto, MD,ⁱ Karen M. Olsson, MD,^c Silvia Ulrich, MD,^j Werner Scholtz, MD,^k Uwe Schulz, MD,^l Ekkehard Grünig, MD,^m Carmine D. Vizza, MD,ⁿ Gerd Staehler, MD,^o Leonhard Bruch, MD,^p Doerte Huscher, MSc, PhD,^{q,r} David Pittrow, MD,^s Stephan Rosenkranz, MD^{t,u}

Pre-Capillary, Combined, and Post-Capillary Pulmonary Hypertension

A Pathophysiological Continuum

TABLE 1 Baseline Cha	racteristics					_	
	All Patients (N = 786)	Typical IPAH (n = 421)	Atypical IPAH (n = 139)	Typical vs. Atypical IPAH p Value	PH-HFpEF (n = 226)	Typical IPAH vs. PH-HFpEF p Value	Atypical IPAH vs. PH-HFPEF p Value
Age, yrs	66.6 ± 15.0	61.5 ± 17.3	71.3 ± 9.2	< 0.001	73.2 ± 8.3	< 0.001	0.434
Female	467 (59.4)	250 (59.4)	77 (55.4%)	1.000	140 (61.9)	1.000	0.686
BMI, kg/m ²	28.1 (24.5-32.6)	26.0 (23.3-29.8)	32.2 (28.3-36.0)	< 0.001	29.6 (25.7-34.0)	<0.001	0.002
WHO-FC				0.089		< 0.001	0.315
1/11	91 (11.8)	71 (17.4)	12 (8.8)		8 (3.6)		
III	540 (70.3)	275 (67.6)	96 (70.6)		169 (75.1)		
IV	137 (17.8)	61 (15.0)	28 (20.6)		48 (21.3)		
6MWD, m	289.5 ± 121.8	319.0 ± 123.5	250.5 ± 104.2	< 0.001	260.0 ± 115.0	< 0.001	0.787
RAP, mm Hg	$\textbf{9.8} \pm \textbf{5.4}$	$\textbf{8.5} \pm \textbf{5.2}$	$\textbf{8.9} \pm \textbf{4.8}$	0.615	$\textbf{12.9} \pm \textbf{4.8}$	< 0.001	< 0.001
PAPm, mm Hg	46.0 ± 11.9	46.9 ± 13.3	$\textbf{43.9} \pm \textbf{10.7}$	0.025	$\textbf{45.7} \pm \textbf{9.4}$	0.437	0.326
PAWP, mm Hg	$\textbf{12.5} \pm \textbf{6.0}$	$\textbf{9.3} \pm \textbf{3.4}$	10.0 ± 3.6	0.186	19.9 ± 4.4	< 0.001	< 0.001
TPG, mm Hg	33.5 ± 13.1	37.6 ± 13.6	33.9 ± 11.1	0.006	25.8 ± 9.1	< 0.001	< 0.001
Cardiac index, I/min/m ²	$\textbf{2.2} \pm \textbf{0.8}$	2.3 ± 0.8	$\textbf{2.2} \pm \textbf{0.8}$	0.629	2.2 ± 0.7	0.653	0.988
PVR, Wood Units	$\textbf{9.6} \pm \textbf{6.7}$	10.8 ± 6.0	$\textbf{9.8} \pm \textbf{10.6}$	0.309	7.0 ± 3.4	< 0.001	< 0.001
SvO ₂ , %	62.2 ± 9.0	62.1 ± 9.9	$\textbf{62.7} \pm \textbf{9.0}$	0.804	$\textbf{62.1} \pm \textbf{6.9}$	0.999	0.863
BNP, pg/ml	269 (127-541)	287 (119-543)	200 (115-469)	1.000	310 (186-638)	0.963	0.312
NT-proBNP, pg/ml	1,738 (621-3,891)	1,435 (541-3,888)	1,683 (478-2,815)	1.000	2,196 (1,125-4,285)	0.021	0.066
Arterial hypertension	66.5	43.2	98.6	< 0.001	91.9	<0.001	0.021
CAD	32.0	15.7	59.7	< 0.001	46.4	< 0.001	0.049
Diabetes mellitus	30.6	10.7	74.8	< 0.001	41.2	< 0.001	< 0.001
AF	28.9	10.7	42.4	< 0.001	54.4	< 0.001	0.187
BMI >30 kg/m ²	37.6	23.5	65.2	<0.001	47.1	<0.001	0.002

			Typical vs. Atypical IPAH		Typical IPAH vs. DH-HFpEF	Atypical IPAH vs. PH-HFpEF	
	Patients	IPAH	IPAH	p Valu	PH-HFpEF	Value	p Value
PH treatment initiated	within fir	st 3 mon	nths				
n	786	421	139		226	1	
ERA	22.6	31.4	22.3	0.157	6.6	:0.001	< 0.001
PDE5i	82.4	76.7	81.3	0.870	93.8	0.001	0.001
PCA	1.7	2.6	0.7	0.931	0.4	0.197	1.000
2 or more PH drugs	11.7	17.8	7.9	0.013	2.7	0.001	0.112
Anticoagulation	63.0	56.3	69.8	0.016	71.2	0.001	1.000
PH treatment at 1 year				_			
n	396	207	81		108		
ERA	36.4	48.3	35.8	0.195	13.9	< 0.001	0.002
PDE5i	80.6	83.6	75.3	0.391	78.7	0.857	1.000
PCA	4.5	5.8	4.9	1.000	1.9	0.452	1.000
2 or more PH drugs	30.6	44.4	25.9	0.014	7.4	< 0.001	0.003
Anticoagulation	67.5	62.8	71.6	0.513	73.4	0.184	1.000

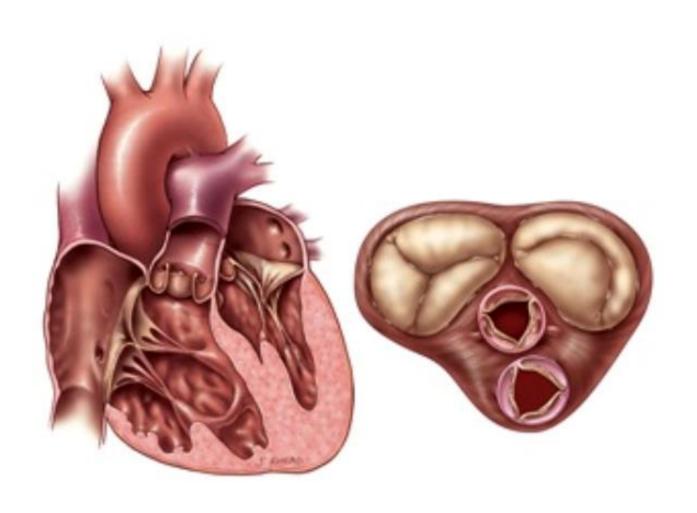
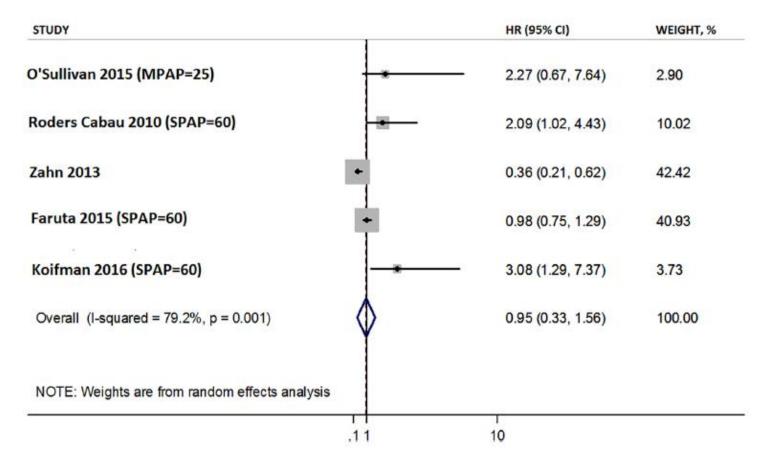
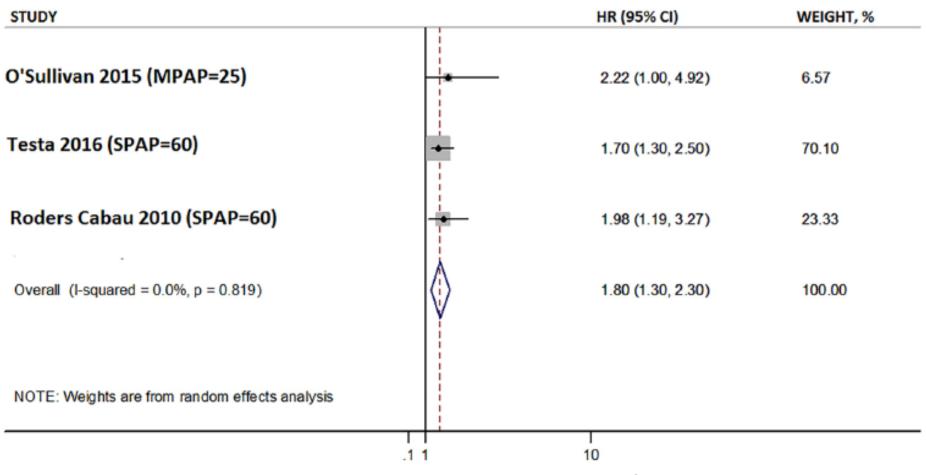

TABLE 3 Discontinuations of PH Therapies								
	All Patients (N = 786)	Typical IPAH (n = 421)	Atypical IPAH (n = 139)	Typical vs. Atypical IPAH p Value	PH-HFpEF (n = 226)	Typical IPAH vs. PH-HFpEF p Value	Atypical IPAH vs. PH-HFpEF p Value	
PDE5i ever	696 (88.5)	359 (85.3)	120 (86.3)	1.000	217 (96.0)	<0.001	0.003	
Patients with follow-up	618	306	106		206			
PDE5i discontinuations	79 (12.8)	27 (8.8)	14 (13.2)	0.578	38 (18.4)	0.005	0.795	
Side effects	23 (3.7)	8 (2.6)	4 (3.8)	1.000	11 (5.3)	0.454	1.000	
Efficacy failure	33 (5.3)	9 (2.9)	3 (2.8)	1.000	21 (10.2)	0.003	0.071	
Other*	25 (4.0)	11 (3.6)	7 (6.6)	0.801	7 (3.4)	1.000	0.745	
ERA ever	322 (41.0)	225 (53.4)	61 (43.9)	0.188	36 (15.9)	<0.001	< 0.001	
Patients with follow-up	281	190	56		35			
ERA discontinuations	56 (19.9)	28 (14.7)	13 (23.2)	0. 462	15 (42.9)	0.001	0.188	
Side effects	36 (12.8)	18 (9.5)	10 (17.9)	0.286	8 (22.9)	0.117	1.000	
Efficacy failure	9 (3.2)	4 (2.1)	1 (1.8)	1.000	4 (11.4)	0.066	0.210	
Other†	11 (3.9)	6 (3.2)	2 (3.6)	1.000	3 (8.6)	0.447	1.000	

TABLE 4 Response to Targeted PH Therapy									
	Typical IPAH	Atypical IPAH	Typical vs. Atypical IPAH p Value	PH-HFpEF	Typical IPAH vs. PH-HFpEF p Value	i. Atypical IPAH vs. PH-HFpEF p Value			
6MWD, m									
Baseline	320 (234 to 417)	250 (175 to 332)	<0.001	270 (165 to 345)	<0.001	1.000			
12 months	414 (324 to 460)	310 (240 to 379)	<0.001	330 (194 to 380)	<0.001	1.000			
Change from baseline in 6MWD, m									
Mean \pm SD	52 ± 101	58 ± 84	1.000	33 ± 82	0.453	0.904			
Median (IQR)	50 (1 to 00)	60 (10 to 75)	/	29 (-10 to 74)					
WHO-FC I/II									
Baseline	17.4	8.8	0.056	3.6	<0.001	0.164			
12 months	39.5	26.2	0.208	23.0	0.026	1.000			
Improvement of WHO-FC	34.5	36.9	1.000	36.8	1.000	1.000			
Change from baseline in NT-proBNP/BNP, %	-42.6 (-77.1 to 17.4) -	-35.9 (-69.9 to 13.8)	1.000	-13.7 (-40.6 to 32.2)	0.031	0.248			

CENTRAL ILLUSTRATION Pulmonary Hypertension in Typical PAH, Atypical PAH, and HFPEF "Typical IPAH" "Atypical IPAH" PH-HFpEF Declining Precapillary Component of PH: TPG, DPG, PVR Increasing Risk Factor Profile: Age, Obesity, Hypertension, Diabetes, CAD, AF, Declining Efficacy of Targeted PAH-therapy? Increasing Side Effects of Targeted PAH-therapy?

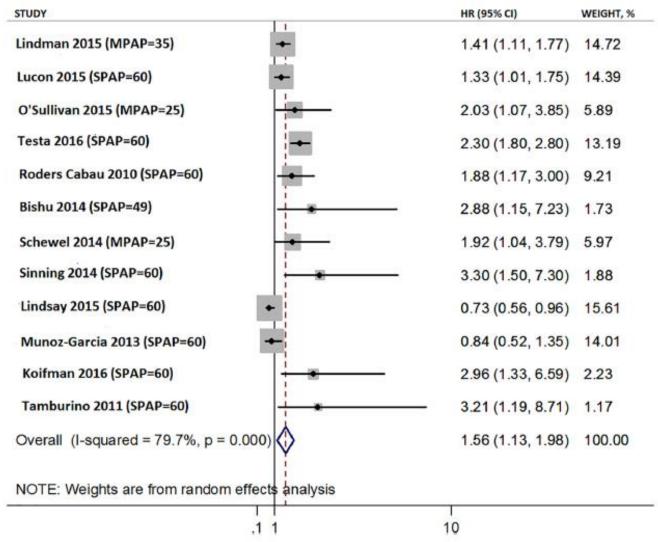
Opitz, C.F. et al. J Am Coll Cardiol. 2016;68(4):368-78.


VALVULAR HEART DISEASE


The predictive value of baseline pulmonary hypertension in early and long term cardiac and all-cause mortality after transcatheter aortic valve implantation for patients with severe aortic valve stenosis: A systematic review and meta-analysis **,***

Damianos G. Kokkinidis ^{a,b,*}, Christos A. Papanastasiou ^c, Anil Kumar Jonnalagadda ^d, Evangelos K. Oikonomou ^e, Christina A. Theochari ^e, Leonidas Palaiodimos ^a, Haralambos I. Karvounis ^c, Ehrin J. Armstrong ^b, Robert T. Faillace ^a, George Giannakoulas ^c

Early mortality after TAVI

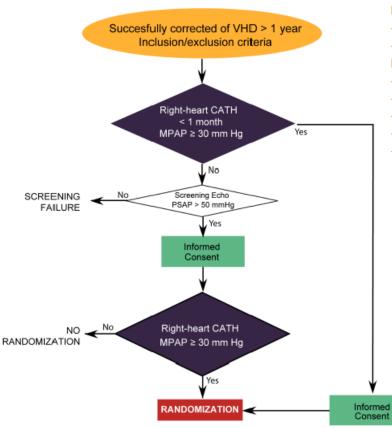


Late cardiac mortality after TAVI

Kokkinidis et al. Cardiovasc Revasc Med 2018

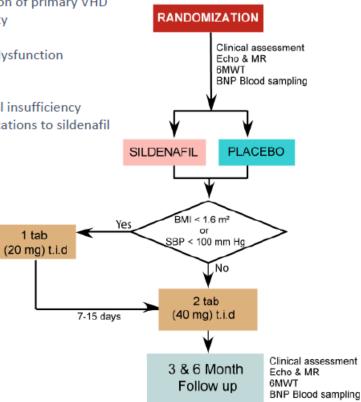
Late overall mortality after TAVI

Effect of Sildenafil on Clinical Outcomes in Patients with Corrected Valvular Heart Disease and Residual Pulmonary Hypertension.


The Sildenafil for Improving Outcomes after Valvular Correction (SIOVAC) Trial.

Javier Bermejo, on behalf of the SIOVAC investigators

The SIOVAC Design



Inclusion Criteria:

- Full successful correction of primary VHD
- 1 month clinical stability

Exclusion Criteria:

- Prosthesis or valvular dysfunction
- SBP < 90 mmHg
- Previous MI or stroke
- Significant liver or renal insufficiency
- Established contraindications to sildenafil

ESC CONGRESS

BARCELONA 2017

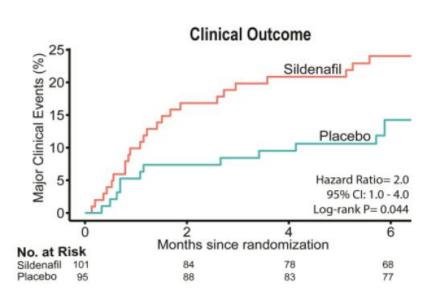
#esccongress

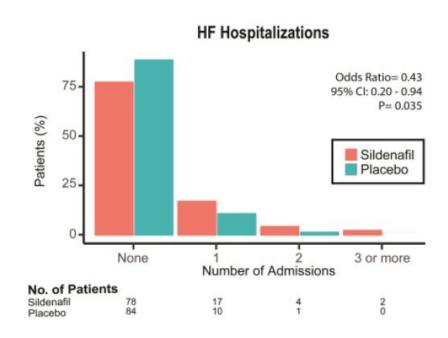
www.escardio.org/ESC2017

The SIOVAC Trial

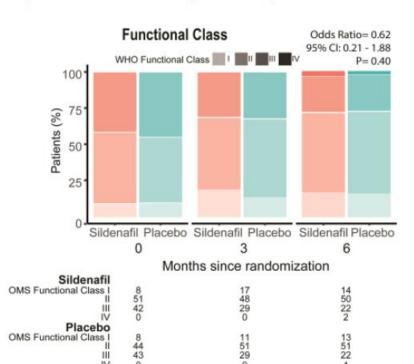
Key Catheterization Data

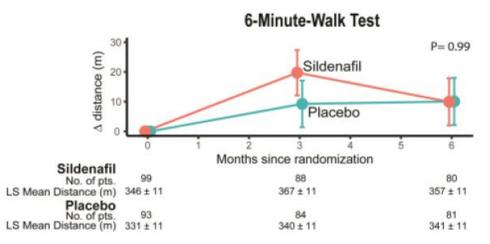
	SILDENAFIL (N= 104)	PLACEBO (N= 96)	TOTAL (N= 200)
Mean Pulmonary Artery Pressure (mm Hg)	40 (34, 46)	37 (34, 44)	38 (34, 44)
Mean Wedge Pulmonary Pressure (mm Hg)	23 (19, 26)	22 (19, 26)	22 (19, 26)
Cardiac Index (L · min ⁻¹ · m ⁻²)	2.8 (2.4, 3.2)	2.8 (2.3, 3.4)	2.8 (2.4, 3.3)
Transpulmonary Pressure Gradient (mm Hg)	16.0 (13.0, 22.0)	15.0 (12.0, 20.0)	16.0 (12.0, 21.2)
Diastolic Transpulmonary Pressure Gradient (mm Hg)	2.0 (0.0, 6.0)	3.0 (0.0, 7.0)	3.0 (0.0, 6.2)
Pulmonary Vascular Resistance (Wood Units)	3.4 (2.4, 4.6)	3.1 (2.2, 4.9)	3.3 (2.3, 4.9)


Median (IQR)



Key Secondary Endpoints





Key Secondary Endpoints

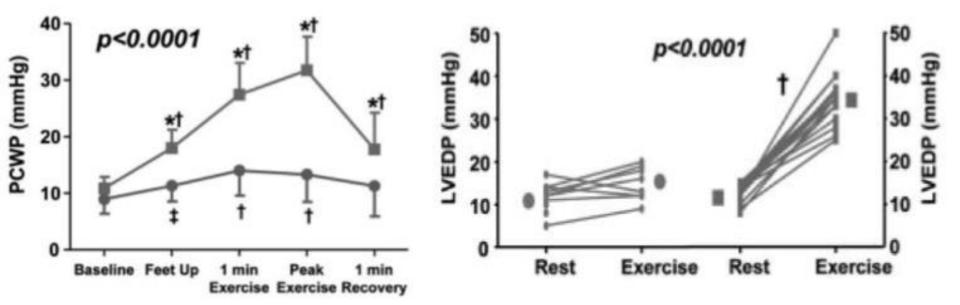
Management of pulmonary hypertension in left heart disease

Recommendations	Classa	Level
Optimization of the treatment of the underlying condition is recommended before considering assessment of PH-LHD (i.e. treating structural heart disease).	1	С
It is recommended to identify other causes of PH (i.e. COPD, SAS, PE, CTEPH) and to treat them when appropriate before considering assessment of PH-LHD.	1	С
It is recommended to perform invasive assessment of PH in patients on optimized volume status.	1	C
Patients with PH-LHD and a severe pre-capillary component as indicated by a high DPG and/or high PVR should be referred to an expert PH center for a complete diagnostic work-up and an individual treatment decision.	lla	c
The importance and role of vasoreactivity testing is not established in PH-LHD, except in patients who are candidates for heart transplantation and/or LV assist device implantation.	ш	С
The use of PAH approved therapies is not recommended in PH-LHD.	III	C

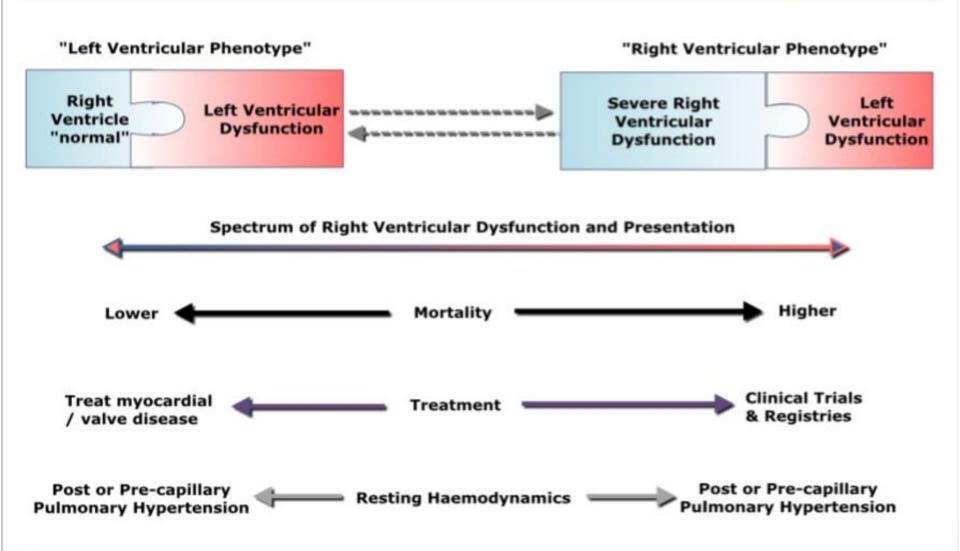
Πνευμονική υπέρταση στην αριστερή καρδιακή νόσο

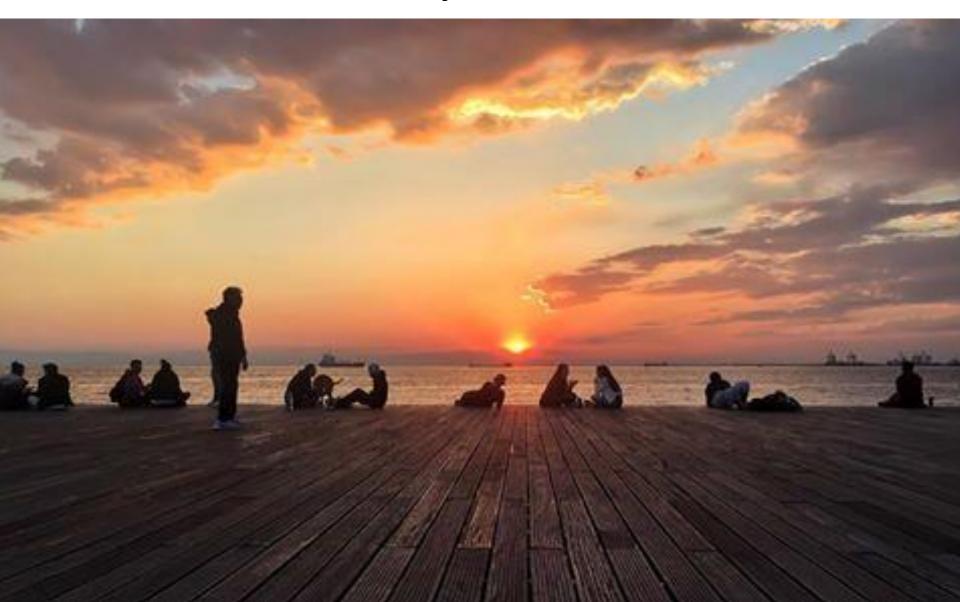
Thank you!

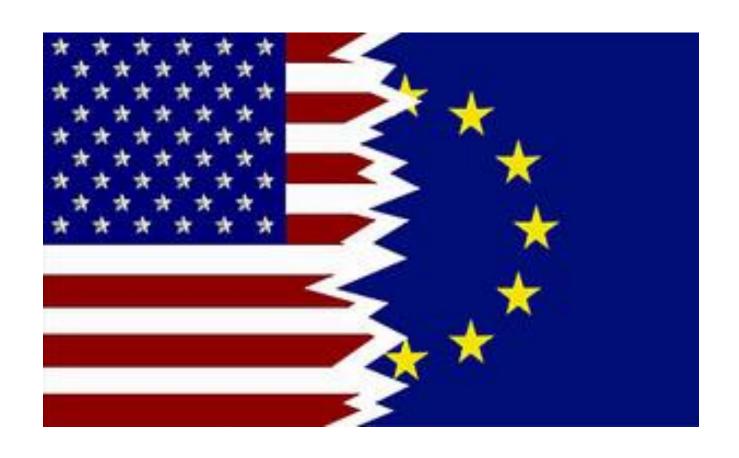
Acknowledgements Aristotle University of Thessaloniki Pulmonary Hypertension Unit, AHEPA Hospital



PH diagnosis by exercise hemodynamics in HFpEF

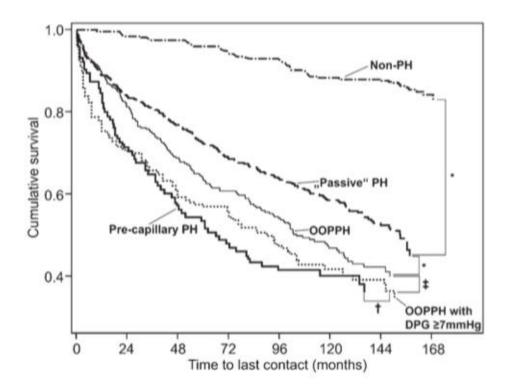

- 55 patients with exercise dyspnoea, normal BNP assay; normal resting haemodynamics and euvolemic
- PCWP > 25 mmHg at peak exercise as main criteria for PH diagnosis


RIGHT and LEFT HEART catheterisation during supine exercise


Heart Failure: Left vs. Right Ventricular Phenotype

Many thanks

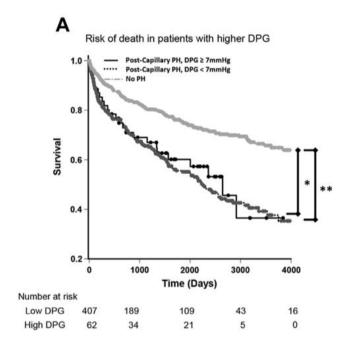
TPG versus DPG

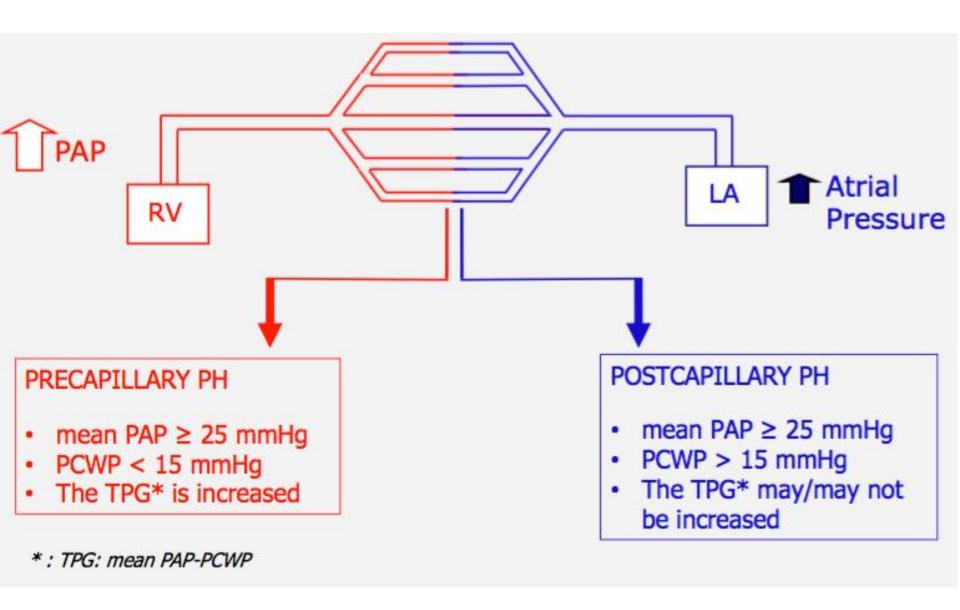


PULMONARY VASCULAR DISEASE

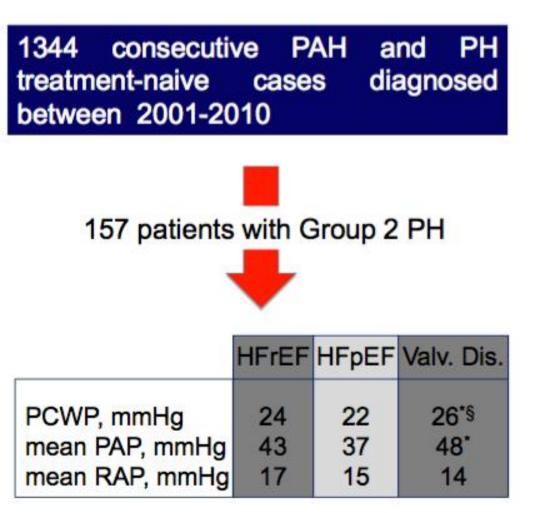
Diastolic Pulmonary Vascular Pressure Gradient

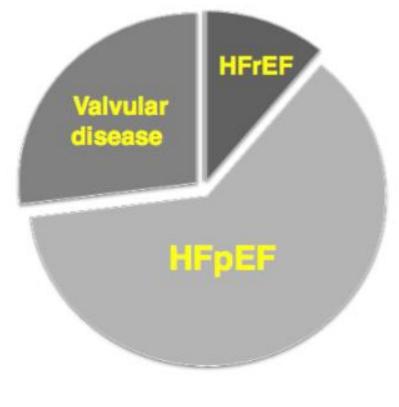
A Predictor of Prognosis in "Out-of-Proportion" Pulmonary Hypertension


Christian Gerges; Mario Gerges, MD; Marie B. Lang; Yuhui Zhang, MD; Johannes Jakowitsch, PhD; Peter Probst, MD; Gerald Maurer, MD; and Irene M. Lang, MD

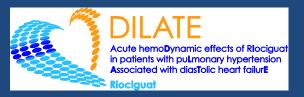


The Diastolic Pulmonary Gradient Does Not Predict Survival in Patients With Pulmonary Hypertension Due to Left Heart Disease


Emmanouil Tampakakis, MD,* Peter J. Leary, MD, MS,† Van N. Selby, MD,‡ Teresa De Marco, MD,‡
Thomas P. Cappola, MD, ScM,§ G. Michael Felker, MD, MHS,|| Stuart D. Russell, MD,* Edward K. Kasper, MD,*
Ryan J. Tedford, MD*

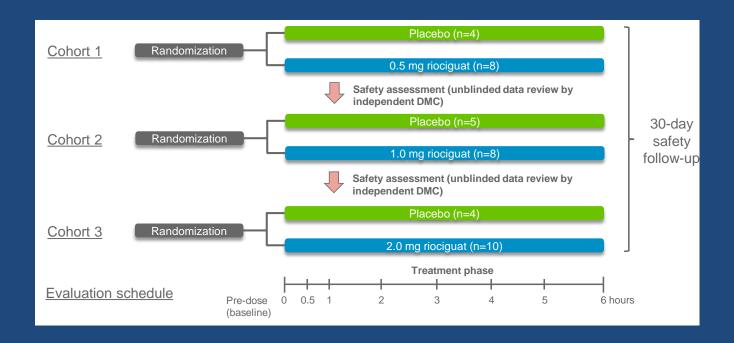


PH due to left heart disease (group 2)


Spectrum of group 2 PH. ASPIRE registry

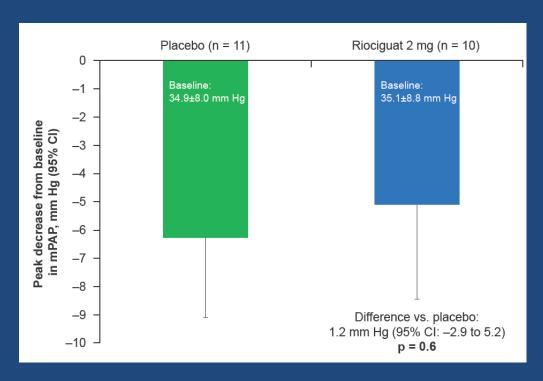
Left ventricular systolic dysfunction associated with pulmonary hypertension riociguat trial (LEPHT)

Dr Diana Bonderman (Medical University of Vienna), Dr Stefano Ghio (University Hospital, Pavia), Prof. Stephan B. Felix (Ernst-Moritz-Arndt-University of Greifswald), Prof. Hossein A. Ghofrani (Justus Liebig University Giessen), Prof. Evangelos D. Michelakis (University of Alberta), Prof. Veselin Mitrovic (Kerckhoff-Klinik Forschungsgesellschaft mbH), Prof. Ronald J. Oudiz (Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center), Dr Francis Boateng (Bayer Healthcare Pharmaceuticals), Dr Andrea-Viviana Scalise (Bayer Hispania), Dr Lothar Roessig (Bayer Pharma AG), Dr Marc J. Semigran (Massachusetts General Hospital and Harvard Medical School)

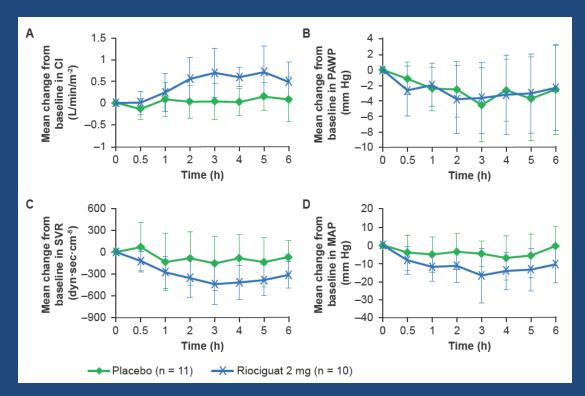


Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): A randomized, double-blind, placebo-controlled, single-dose study

D. Bonderman1, I. Pretsch2, R. Steringer-Mascherbauer3, S. Rosenkranz4, C. Tufaro1, R. Frey5, M. Ochan Kilama6, S. Unger7, L. Roessig8, I. M. Lang1


DILATE: Study design

Study design of the DILATE-1 study. Study medication was administered orally as a single dose of a film-coated tablet of riociguat (0.5 mg, 1 mg, or 2 mg) or matching placebo.


DILATE: Peak decrease in mPAP

Peak decrease in mean pulmonary artery pressure (mPAP) from baseline up to 6 h after administration of study drug in the riociguat 2 mg group vs. placebo (primary endpoint). The difference between treatment groups was analyzed by a two-group, two-sided t-test. The treatment difference (95% confidence interval) and p-value are also shown

DILATE: Hemodynamics

Mean change from baseline in selected hemodynamic parameters in the 6 h following administration of study drug. (A) cardiac index (CI); (B) pulmonary arterial wedge pressure (PAWP); (C) systemic vascular resistance (SVR); and (D) mean arterial pressure (MAP)

DILATE: Results III

Echocardiography

•Compared with placebo, riociguat 2 mg decreased left atrial area, with a trend towards statistical significance (P=0.06), and significantly decreased right ventricular enddiastolic (RVED) area (P=0.04).

Exploratory biomarkers

•Plasma levels of NT-proBNP, asymmetric dimethylarginine, ST2, and Galectin-3 revealed significant variability and no significant changes vs. placebo.

DILATE: Conclusions

- Single doses of riociguat were well-tolerated and showed favorable hemodynamic and echocardiographic effects in patients with HFpEF and PH.
- The ventricular filling required to establish an increased SV was not accompanied by increased PAWP, indicating that riociguat might improve diastolic function via a change in relaxation and/or distensibility of the LV.
- Chronic, large-scale, placebo-controlled studies are required to further assess the long-term clinical safety and efficacy of riociguat started at lower doses and carefully up-titrated in this population.