Πνευμονική Υπέρταση σε Χρόνιες Πνευμονοπάθειες

Ι. Μητρούσκα Διακλινικό Ιατρείο Πνευμονικής Υπέρτασης ΠΑΓΝΗ Κρήτη

- 1. Pulmonary arterial hypertension
- 1.1 Idiopathic PAH
- 1.2 Heritable PAH
- 1.2.1 BMPR2
- 1.2.2 ALK-1, ENG, SMAD9, CAV1, KCNK3
- 1.2.3 Unknown
- 1.3 Drug and toxin induced
- 1.4 Associated with:
- 1.4.1 Connective tissue disease
- 1.4.2 HIV infection
- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart diseases
- 1.4.5 Schistosomiasis
- 1' Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis
- 1". Persistent pulmonary hypertension of the newborn (PPHN)
- 2. Pulmonary hypertension due to left heart disease
 - 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies
- 3. Pulmonary hypertension due to lung diseases and/or hypoxia
 - 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitial lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases
- 4. Chronic thromboembolic pulmonary hypertension (CTEPH)
- 5. Pulmonary hypertension with unclear multifactorial mechanisms
- 5.1 Hematologic disorders: chronic hemolytic anemia, myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure, segmental PH

Updated Classification of Pulmonary Hypertension

COPD and IPF
have been the archetype
and the source
of most
of the current knowledge
on this phenomenon

Group 3. PH due to lung disease and/or hyper

Obstructive pulmonary disease

- COPD
- Bronchiolitis obliterans
- The reported prevalence of PH in patients with COPD ranges from **25-91%**

New Nice 2018

Interstitial Lung Diseases

- Idiopathic interstitial pneumonias
- Chronic hypersensitivity pneumoni
- Occupational lung disease

depends on the severity of the disease 3-85%

Nathan Lancet 2017

in:

- Other lung diseases with mixed restrictive/obstructive patettern
 - Sarcoidosis
 - Combined pulmonary fibrosis and emphysema
 - Cystic fibrosis and non-cystic fibrosis bronchiectasis
 - Lymphangioleiomyomatosis
 - Other destructive lung disease
- Alveolar Hypoxia without lung disease
 - Sleep –disordered breathing
 - Chest wall abnormalities
 - Obesity hypoventilation syndromes
 - Other alveolar hypoventilation disorders
 - Chronic exposure to high altitude

Wide range due to differences

Disease severity

PH definition Diagnostic test

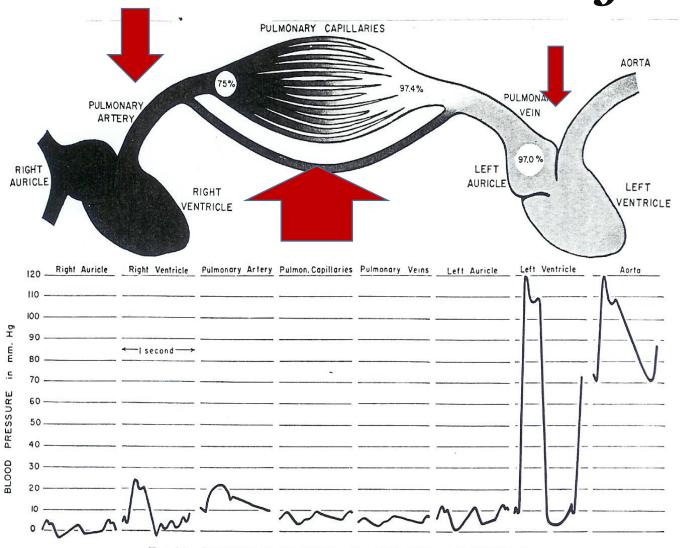
Pediatrics

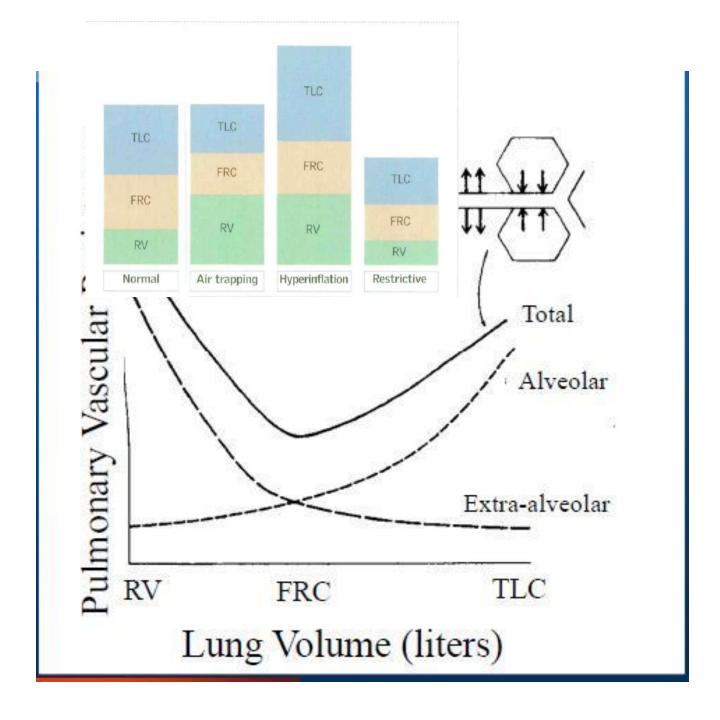
Pathophysiology

Singh I The American J of Med 2016

Pathophysiology

PH in Chronic Lung Disease




Fig. 24.—Pressures in the Pulmonary and Systemic Circulations

Passive Factors Influencing Pulmonary Vascular Resistance

Passive Factors	Effect on PVR	Mechanism of Increased PVR		
Increased lung volume (above FRC)	Increases	Lengthening and compression of alveolar vessels		
Decreased lung volume (below FRC)	Increases	Compression of extra-alveolar vessels		
Increased pulmonary arterial pressure Increased left atrial pressure Increased pulmonary blood volume Increased cardiac output	Decreases	Recruitment and distension of previously underperfused vessels		
Gravity/body position	Decreases in gravity-dependent regions of the lungs	Hydrostatic effects leading to recruitment and distension of previously underperfused vessels		
Increased blood viscosity	Increases	Viscosity directly increases resistance		
Positive-pressure ventilation	Increases	Increased alveolar pressure with compression and lengthening of alveolar vessels Increased intrapleural pressure with compression of extra-alveolar vessels Reduces venous return resulting in decreased pulmonary blood flow and de-recruitment		

PVR Increases at Lung Volumes Below and Above FRC PVR Lung Volume Kinsella JP, 2003

Pulmonary Vascular Resistance = Pulmonary Driving Pressure/ Cardiac Output

Factors contributing to elevation in PVR in COPD

Contributing Factors	Consequence			
Expiratory airflow obstruction	Alveolar hyperinflation			
Chronic hypoxia LL-genotype polymorphism of 5-HT Increased expression of ADORA2B Proliferation of bone marrow EPCs Cigarette smoking injury Airway and vascular wall inflammation	Pulmonary vascular remodeling			
Hypoxia and acidosis	Reflexive pulmonary vascular constriction			
	Conscilectori			
Polycythemia	Increased blood viscosity			
ADORA2B = adenosine A2B receptor; EPC = endothelial progenitor cell; 5-HT = serotonin.				

Singh I The American J of Med 2016

Active Factors Influencing Pulmonary Pressure Active Factors that In Chronic Lung Disease

Active Factors that Increase PVR

Neural factors:

- Sympathetic nervous system stimulation
- Sympathomimetics: norepinephrine, epinephrine, and alpha-agonists

Gaseous factors:

 Alveolar hypoxia and hypercapnia

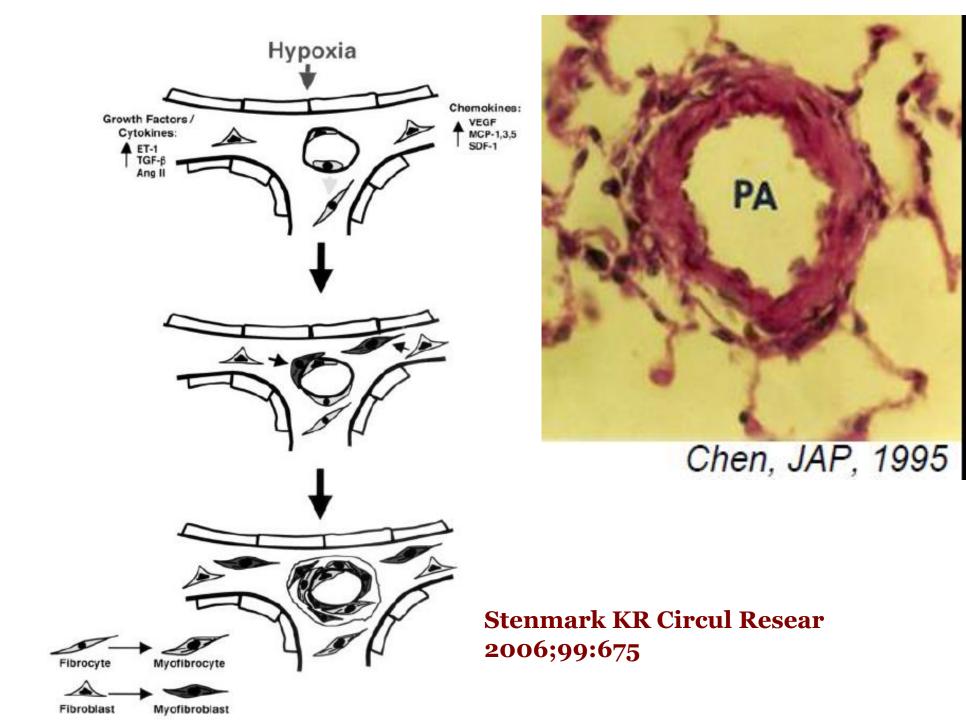
Other factors:

- Thromboxane
- Endothelin
- Angiotensin
- PG-F_{2alpha} and PG-E2
- Low pH of mixed venous blood

Neural factors:

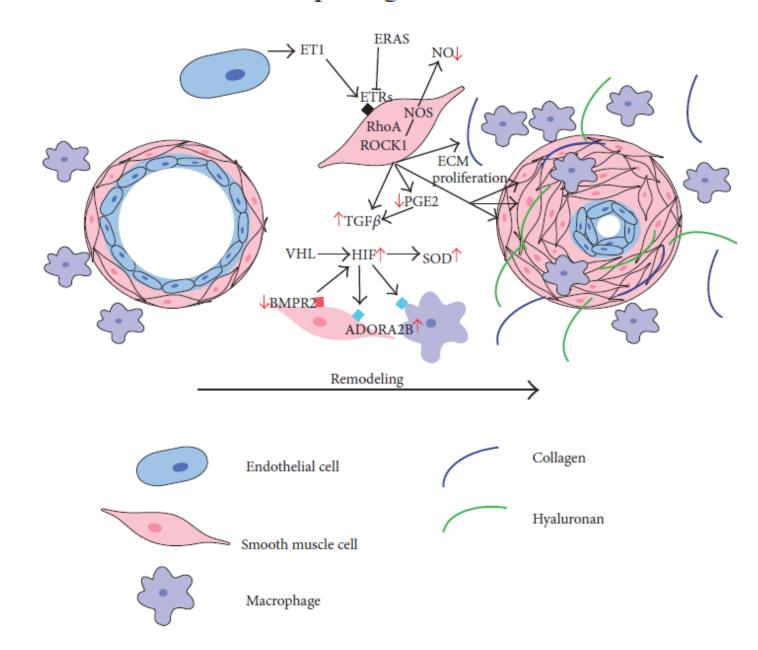
Decrease PVR

- Parasympathetic nervous system stimulation
- Parasympathomimetics: acetylcholine
- Sympathomimetic: beta-2-agonists


Gaseous factor:


Nitric oxide

Other factors:


- Prostacyclin
- Bradykinin
- PG-E1

Singh Inderjit AJM,2016(129)

Cellular processes and mediators involved in the pathogenesis of PH associated with lung fibrosis.

Similarities in vascular remodeling between PH-COPD and PH-IPF?

Despite clinical and histologic vascular remodeling in all patients with PH-COPD and PH-IPF, differential gene expression pattern was present in pulmonary artery profiles.

Several genes involved in retinol metabolism and ECM receptor interaction enable discrimination of vascular remodeling in PH-IPF or PH-COPD.

This suggests that pulmonary arterial remodeling in PH-COPD and PH-IPF is caused by different molecular mechanisms and may require specific therapeutic options.

Assessment / Definition

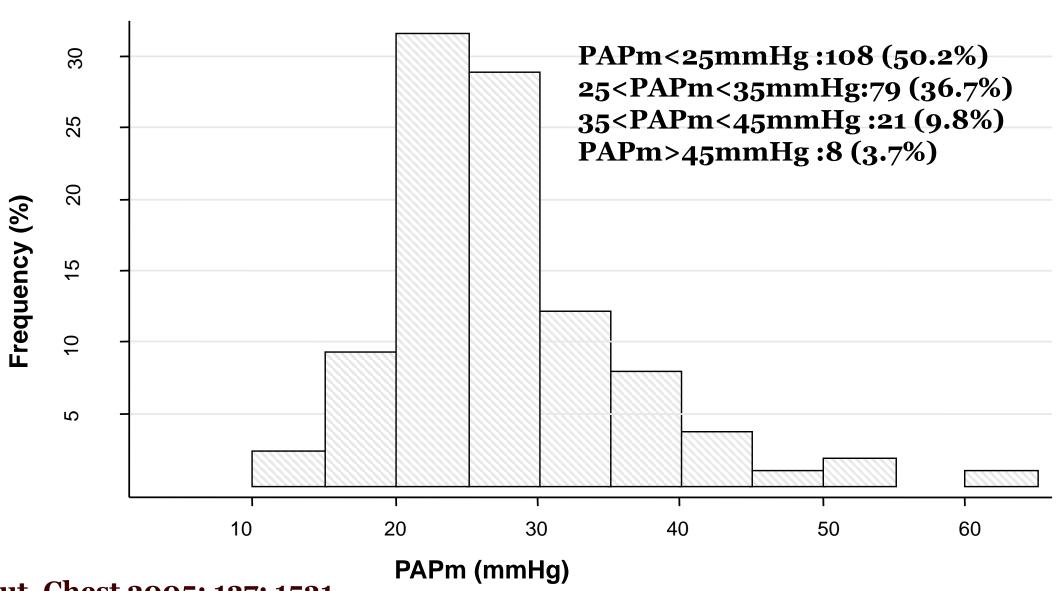
Current (2015)
Haemodynamic classification
of Pulmonary Hypertension
due to
Lung diseases

	Right heart catheterisation		
COPD/ILD without PH	Mean PAP <25 mm Hg		
COPD/ILD with PH	Mean PAP ≥25 mm Hg, but <35 mm Hg		
COPD/ILD with severe PH	Mean PAP >35 mm Hg, or ≥25 mm Hg with low cardiac output (Cl <2.5 l/min/m²)		
COPD = chronic obstructive pulmonary disease; ILD = inter	stiti	lung disease; PAP = pulmonary arterial pressure; PH = pulmonary hypertension	

Includes a minority of pts mPAP>35 mmHg $\rightarrow \downarrow$ DLCO, rest PaO2, lower exercise capacity decline PaO2 at exercise independent of PFTs

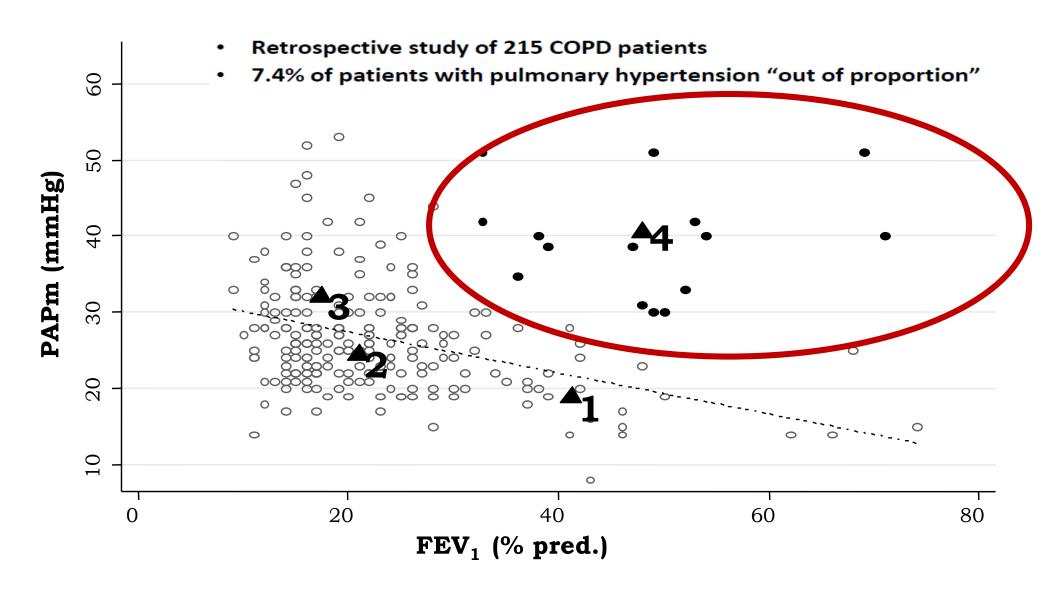
2018 classification

- Chronic lung disease (CLD) without PH (mPAP<20mmHg)
- CLD with PH>/= 20mmHg and PVR>/= 3WU, with supplemental O2 if needed)
 - Stick to the standard definition
 - RHC needed to assessment of CO and PAOP
- CLD with severe PH (mPAP>/=35mmH)
 - Rationale:
 - at this level hemodynamics contribute to exercise limitation.
 - minor subpopulation with 'vascular phenotype' (in COPD <3%)
 - optimal target population in future RCT addressing PH in chronic lung disease

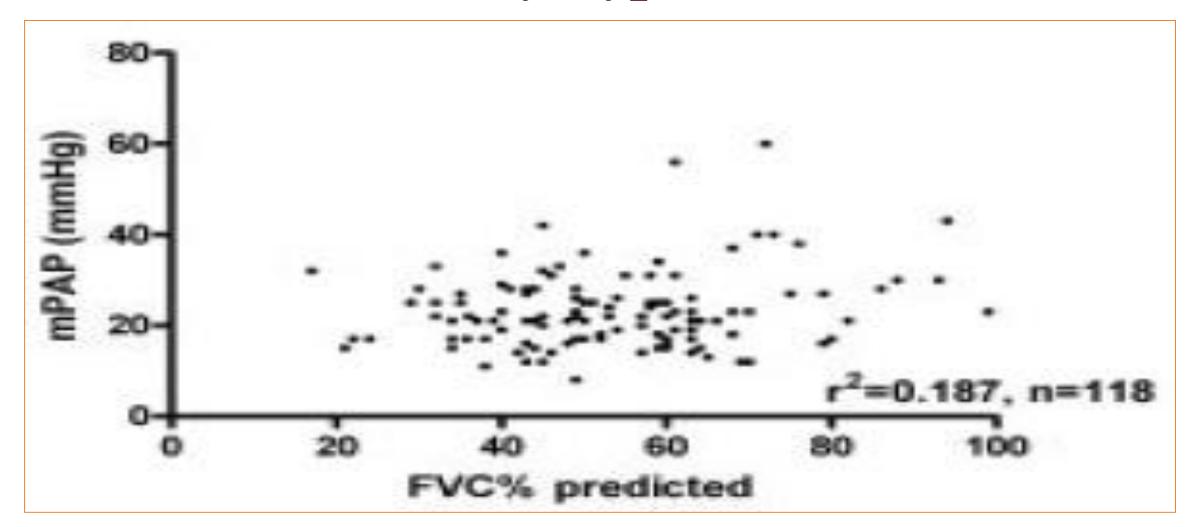

Lower PA clinically significant in COPD/DPLD

If

\$\\$\\$\\$\\$CI or

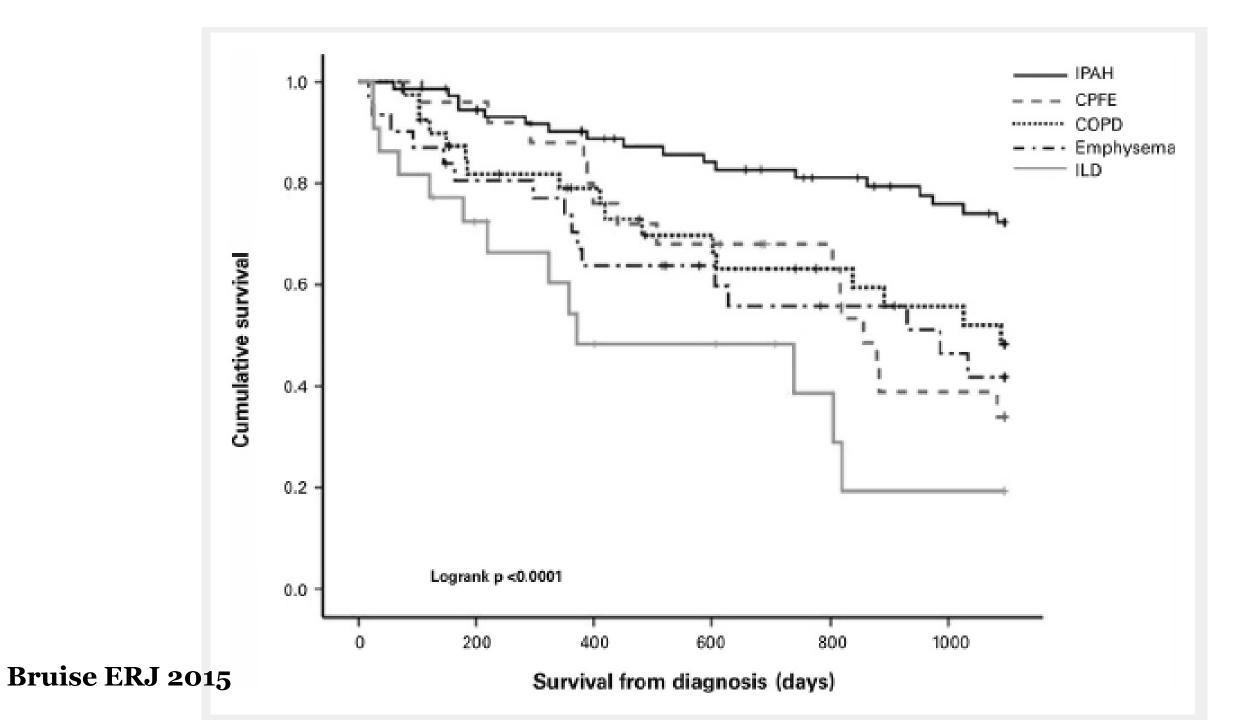

RV dysfunction

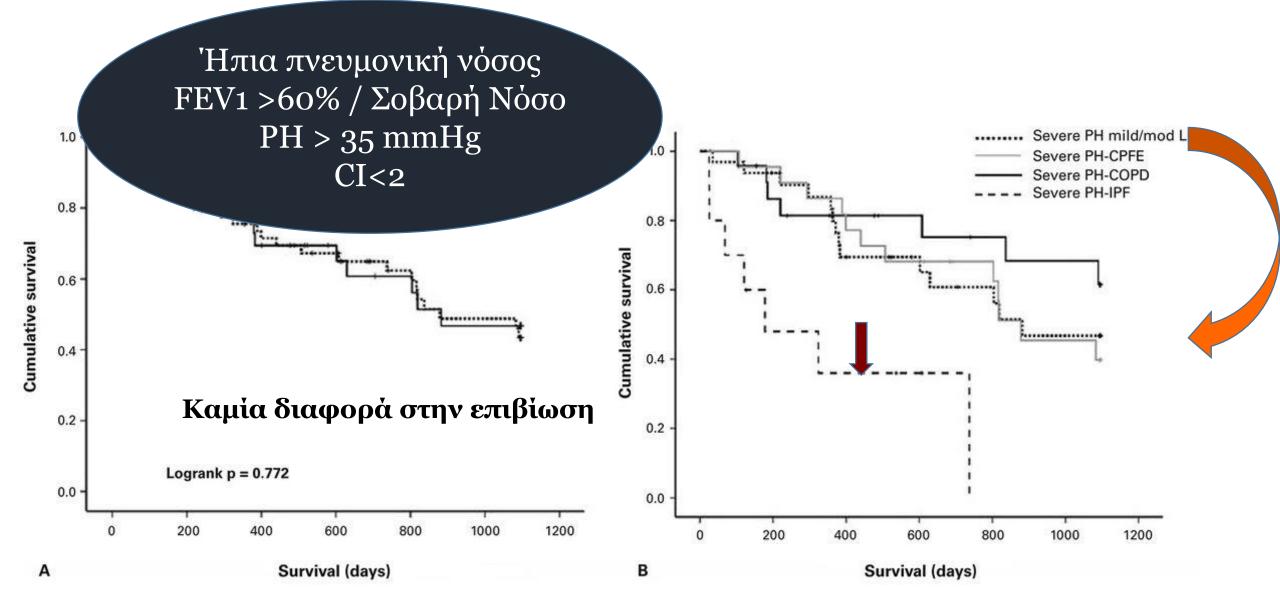
Distribution of PAPm



Thabut, Chest 2005; 127: 1531

COPD and Pulmonary Hypertension




ILD and Pulmonary Hypertension

PH and Chronic Lung Disease

So What

Funke M, OD Schoch 2016 Swiss Med Wkly

Algorithm for Diagnosis of PH in Known Lung Disease

Suspect

Support

Confirm

Symptoms and Signs:

Dyspnea/SOB out of proportion Loud P2, evidence of RHF Right axis deviation in ECG Elevated NT-proBNP/BNP levels

PFT:

Low DLCO e.g <40% Elevated %VC/DLCO ratio (low KCO)

6MWT:

Low distance/Exercise desaturation High Borg scale

CT:

Extent of lung disease Enlarged PA segment, PA/A ratio>1

CPET:

Exercise limitation by exhausted circulatory NOT ventilator reserve

Echocardiogram:

Elevated sPAP
Signs of right ventricular
dysfunction

Right Heart Catheterization

Refer to PH Experts Center

Criteria favoring group 1 (PAH)	Testing	Criteria favoring group 3 (PH due to lung disease)					
Extent of lung disease							
Normal or mildly impaired: FEV1>50% pred. (COPD) FVC >70% pred. (IPF) Low diffusion capacity in relation to obstructive /restrictive changes	Pulmonary function testing	Moderate to very severe impairment: - FEV1<60%pred.(COPD) - FVC <70% pred.(IPF) - Diffusion capacity "corresponds" to obstructive /restrictive changes					
Absence of or only modest_airway or parenchymal abnormalities	High resolution CT scan **	Characteristic airway and/or parenchymal abnormalities					
	Hemodynamic profile						
Moderate to severe pH	Right heart catheterization	Mild to moderate PH					
	Ancillary Testing						
Present	Further PAH risk factors (as e.g HIV, connective tissue disease, BMPR2 mutations,)	Absent					
Features of exhausted circulatory reserve -Preserved breathing reserve -Reduced oxygen pulse -Low CO/VO2 slope -Mixed venous oxygen saturation at lower limit -No change or decrease in PaCO2 during exercise	Cardiopulmonary exercise test *** (particulary relevant in COPD)	Features of exhausted ventilatory reserve - Reduced breathing reserve -Normal oxygen pulse -Normal CO/VO2 slope -Mixed venous oxygen saturation above lower limit - Increase in PaCO2 during exercise					
Predominal Predominant Obstructive/restrictive profile							

2015

Recommendations for Pulmonary Hypertension due to Lung disease

Management

Recommendations	Classa	Level ^b
Echocardiography is recommended for the non-invasive diagnostic assessment of suspected PH in patients with lung disease	-	С
Referral to an expert centre is recommended ^d in patients with echocardiographic signs of severe PH and/or severe right ventricular dyefanction	-	С
The optimal treatment of the underlying lung disease, including long-term O_2 therapy in patients with chronic hypoxaemia, is recommended in patients with PH due to lung diseases	-	9
Referral to PH expert center should be considered for patients with signs of severe PH/severe RV failure for individual-based treatment	lla	C
RHC is not recommended for suspected PH in patients with lung disease, unless therapeutic consequences are to be expected (e.g. lung transplantation, alternative diagnoses such as PAH or STEPH, potential enrolment in a clinical trial)	=	
The use of drugs approved for PAH is not recommended in patients with PH due to lung diseases	Ш	С

Right Heart Catheterization in Chronic Lung disease

Nice 2018

- RHC remains the **gold standard** for the diagnosis of PH
- -suspicion of underlying PH does not always mandate RHC
- -RHC **should be performed** in patients with chronic lung disease
 - 1. Evaluation for lung transplantation
 - 2. Suspicion of left ventricular systolic/diastolic dysfunction
 - 3. Severe PH is suspected and further therapy or inclusion in clinical trials or registries are being considered.

-RHC may be considered:

- 1. Clinical worsening, progressive exercise limitation and/or gas exchange abnormalities are disproportionate to ventilatory impairment.
- 2. When an accurate prognostic assessment is deemed sufficiently important

Technique: averaging of pressure values over several respiratory cycles.

2015

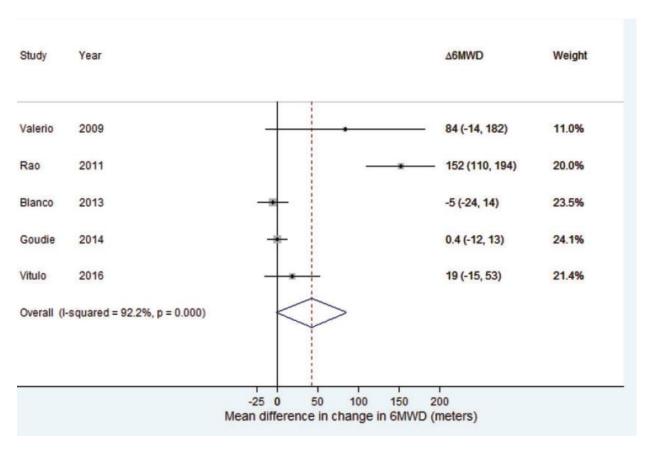
Recommendations for Pulmonary Hypertension due to

2018

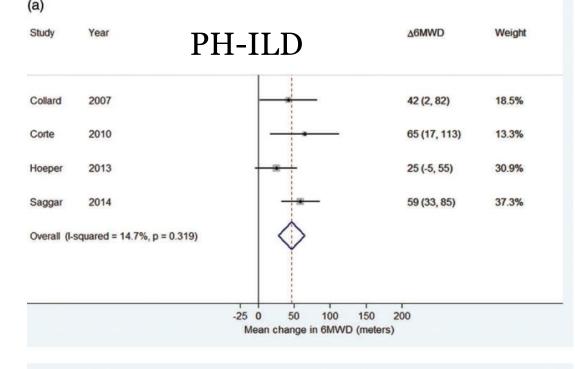
Treatment of PH in Lung Diseases
Evidence for appropriate benefit to risk ratio of
PAH approved drugs??

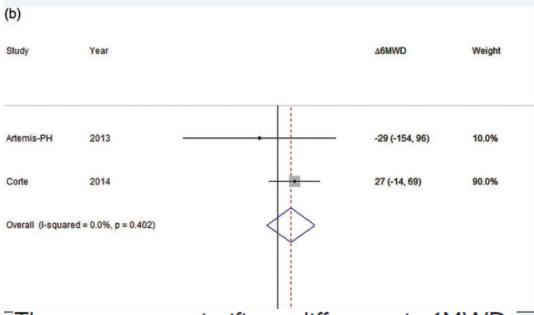
General

- 1. Treatment of underlying disease
- 2. No established vascular therapy except for LTOT in COPD
- 3. Rational for use PAH approved therapy?
 - PH contributes to limitation of exercise capacity
 - PH contributes to shortage of life expectancy?
 - Vascular abnormalities contribute to bronchial/parenchymal disease progression


Recommendations	Classa	Level ^b
Echocardiography is recommended for the non-invasive diagnostic assessment of suspected PH in patients with lung disease	1	С
Referral to an expert centre is recommended ^d in patients with echocardiographic signs of severe PH and/or severe right ventricular dysfunction	-	С
The optimal treatment of the underlying lung disease, including long-term O_2 therapy in patients with chronic hypoxaemia, is recommended in patients with PH due to lung diseases	_	8
Referral to PH expert center should be considered for patients with signs of severe PH/severe RV failure for individual-based treatment	lla	С
RHC is not recommended for suspected PH in patients with lung disease, unless therapeutic consequences are to be expected (e.g. lung transplantation, alternative diagnoses such as PAH or CTEPH, potential enrolment in a clinical trial)	=	
The use of drugs approved for PAH is not recommended in patients with PH due to lung diseases	Ш	U

Therapeutic trials focusing on PH-COPD


Meta-analysis: Chen et al, J Thorac Dis 2015


Meta-analysis: Prins et al Pulm Circ 2017

Prins K 2017

COPD-PH. PAH-specific therapy did not significantly increase walking distance

There was not a significant difference in 6MWD

PAH targeted therapy in COPD 2 meta-analysis and recent small trials

- Βελτίωση αιμοδυναμικών παραμέτρων ιδιαίτερα σε σοβαρή PH-COPD (mPAP>35mmHg)
- Preliminary evidence that may translate into improvement of exercise tolerance and quality of life, in particular in severe PH-COPD
- Gas exchange may initially deteriorate with minor relevance upon long term use
 - Differences between inhalative and systemic route of application
- Large RCTs are missing-should focus be on the 'vascular phenotype COPD' (mPAP>35mmHg, circulatory exercise limitation)
- This does not preclude to focus on COPD patients with lower mPAP being enrolled in future studies

Studies of PHassociated IPF With Targeted therapy

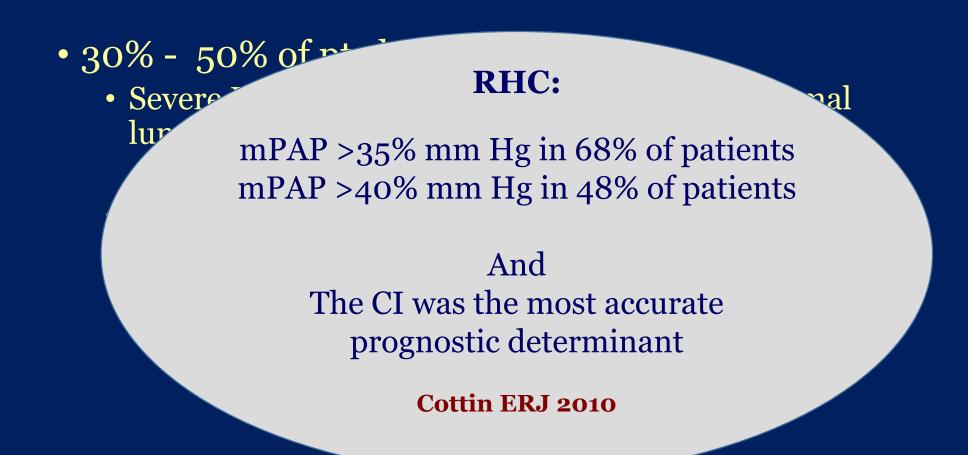
	Disease type	Study design	Number of patients	Therapy	Outcomes	Notes	Findings
Olschewski et al (1999) ²³	Lung fibrosis	Open-label	Eight total, one with IPF	Inhaled NO and epoprostenol; intravenous epoprostenol	Inhaled prostanoids increased gas exchange	-	Positive
Ghofrani et al (2002) ²⁴	ILD	Open-label	16 total, seven with IPF	Sildenafil or epoprostenol	Sildenafil increased V/Q mismatch and oxygenation saturation; epoprostenol worsened V/Q		Positive
Krowka et al (2007) ²⁵	IPF	RCT	51	Inhaled iloprost	No differences for 6MWT, NYHA functional class, dyspnoea score, and exercise oxygen saturation	Abstract only	Negative
Gunther et al (2007) ³⁶	IPF	Open-label	12	Bosentan	No worsening of gas exchange	-	Equivocal
Collard et al (2007) [₹]	IPF	Open-label	14	Sildenafil	57% had improved 6MWT by ≥20%		Positive
Minai et al (2008) ²⁸	ILD	Retrospective	19 total, eight with IPF	Epoprostenol (n=10) and bosentan (n=9)	79% had improved 6MWT by >50 m		Positive
Zisman et al (2010) ²⁹	IPF	RCT	180	Sildenafil	No increase in 6MWT by ≥20%, but QOL and oxygen saturation increased		Equivocal
Jackson et al (2010)³º	IPF	RCT	29	Sildenafil	No difference in 6MWT or Borg Dyspnea Scale	-	Negative
Raghu et al (2013) ³¹	IPF	RCT	492	Ambrisentan	Terminated early because of an absence of efficacy in TTCW	-	Negative
Hoeper et al (2013) ³⁷	ILD	Open-label	22 total, 13 with IPF	Riociguat	Increased cardiac output and decreased PVR; no decrease in mPAP		Positive
Zimmerman et al (2014) ³³	ILD	Open-label, observational	Ten total, six with IPF	Sildenafil (n=5) and tadalafil (n=5)	Increased cardiac output and decreased PVR; no change in 6MWT and BNP		Equivocal
Corte et al (2014) ³⁴	ILD	RCT	60 total, 46 with IPF	Bosentan	Unchanged haemodynamics, symptoms, and NYHA functional class	-	Negative
Saggar et al (2014) ³⁵	ILD	Open-label	15 total, eight with IPF	Treprostinil	Improved haemodynamics without hypoxaemia	-	Positive
Raghu et al (2015) ³⁶	IPF	RCT	117	Ambrisentan	Unchanged haemodynamics	-	Negative
Hoeper et al (2015) ³⁷	ILD	Retrospective registry review	151 total, 113 with IPF	Various drugs	Improved 6MWT and NYHA functional class	Poor survival in ILD-PH	Positive
RISE-IIP (NCT02138825)	IPF	RCT	147	Riociguat	Terminated early for harm	To be published	Negative

COMPERA Registry: response to sildenafil in PH-IIP

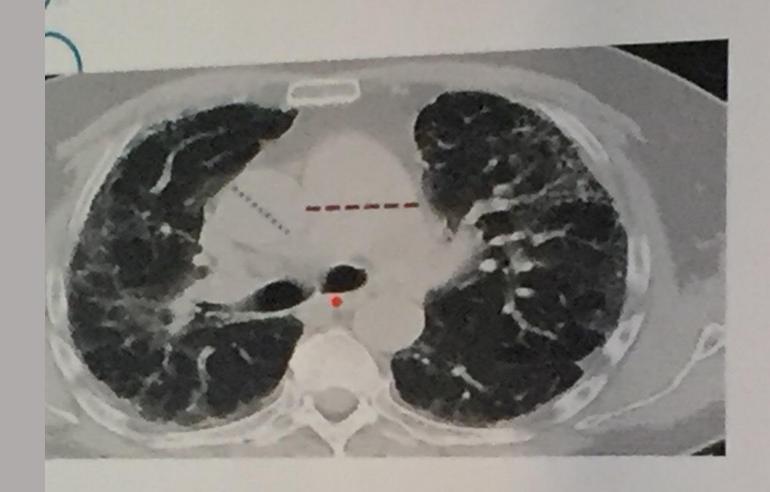
Overall conclusion IIP-PH

• No evidence for the use of ERAs in IIP-PH with ambrisentan contraindicated in IPF.

• Riociguat is contraindicates in PIIP-PH.


• The data on the use of sildenafil and prostanoid therapy in IIP-PH is too limited for any current recommendation, but further RCT's are encouraged

Group 3. PH due to lung disease and/or hyper


- Obstructive pulmonary disease
 - COPD
 - Bronchiolitis obliterans
- Interstitial Lung Diseases
 - Idiopathic interstitial pneumonias
 - Chronic hypersensitivity pneumonitis
 - Occupational lung disease
- Other lung diseases with mixed restrictive/obstructive patettern
 - Sarcoidosis
 - · Combined pulmonary fibrosis and emphysema
 - Cystic fibrosis and non-cystic fibrosis bronchiectasis
 - Lymphangioleiomyomatosis
 - Other destructive lung disease
- Alveolar Hypoxia without lung disease
 - Sleep –disordered breathing
 - Chest wall abnormalities
 - Obesity hypoventilation syndromes
 - Other alveolar hypoventilation disorders
 - Chronic exposure to high altitude
- Pediatrics

Combined Pulmonary Fibrosis and Emphysema (CPFE)

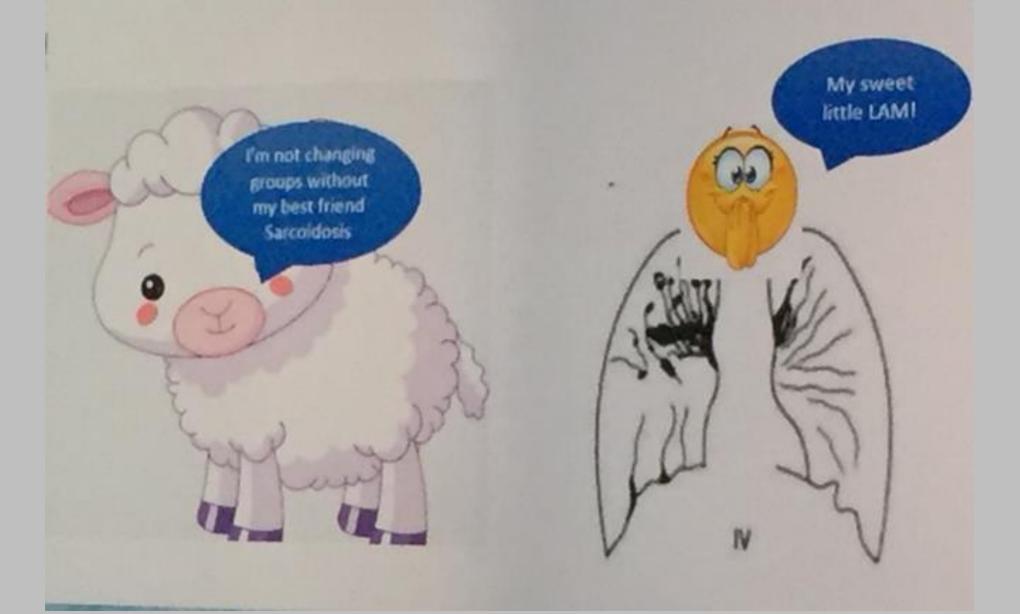
PH in sarcoidosis

Among 373 patients awaiting TX in advanced sarcoidosis, 74% have PH Shorr et al, Chest 2003)

Studies in PH sarcoidosis

	Type of Study/Number	Therapy	Outcomes
Preston et al.	Prospective observational (S)	Inhales NO (5), inhaled NO with IV EPO (1), CCBs (2)	Short team 20% decrease to FVIII and mPAP; Long term the SAWT
Baughman et al.	Prospective open label 18 week trial (22)	Inheted Soprest (15)	E15 petients aboved _mPAPIPVR, \$15 improvement in SMWT
Fisher et al.	Setrospective case series (7)	IV Epo (6), SQ treprostini (1)	Interved SYHA Class
Barriett et al.	Retemperative case series (22)	Initial: IV Epo, hoseolen, sildecatil	Improved SMWT, RYNA Class (INPAP and FVR in 12 patients
Millman et al.	Retrospective chart review (12)	Sildenafii (12)	(MPAPIPVR, Icandiac output, no a GMWT
Culver et al.	Retrospective chart review (7)	Screetan (3), bosentan and IV Epo (4)	(mPAP at 6-15 months to half the patients
Baughman et al.	Retrospective chart review (G)	Bossnian (S)	mPAP Non-Somming to Nomining in 2/5 patients at 4
Justison et al.	RCT 12 weeks study (26)	Ambrisanian	months No.4 Setters
Baughman et al	RCT 16 weeks (35)	Bosentan	ImPAP and PVR, no 3 GMWT
Keir et al	Retrospective (33)	50d=29, bos=3	EMWIT +15 ID, I GNP, I TAPSE

Does Sarcoidosis belong in group 5 or Group 3?


Case for group 5

- 1. "Uncertain" as to the etiology
- 2. ?PH responds better to treatment than other group 3 conditions?

Case for group 3:

- 1. In the vast majority of cases it's a predominant lung disease
- 2. Virtual all cases with severe PH have parenchymal lung changes
- 3. In these lungs, the remodeling morphology of the lung vessels is similar to other lung diseases, not characterized by predominant granuloma formation
- 4. Does it "sit better" with blood dyscrasias and renal failure \otimes or with other lung diseases \otimes ?
- 5. Goal of classification Task Force is eventually to eliminate group 5

LAM and Sarcoidosis: group 5 to 3?

Group 3. PH due to lung disease and/or hyper

- Obstructive pulmonary disease
 - COPD
 - Bronchiolitis obliterans
- Interstitial Lung Diseases
 - Idiopathic interstitial pneumonias
 - Chronic hypersensitivity pneumonitis
 - Occupational lung disease
- Other lung diseases with mixed restrictive/obstructive patettern
 - Sarcoidosis
 - Combined pulmonary fibrosis and emphysema
 - Cystic fibrosis and non-cystic fibrosis bronchiectasis
 - Lymphangioleiomyomatosis
 - Other destructive lung disease
- Alveolar Hypoxia without lung disease
 - Sleep –disordered breathing
 - Chest wall abnormalities
 - Obesity hypoventilation syndromes
 - Other alveolar hypoventilation disorders
 - Chronic exposure to high altitude
- Pediatrics

Chronic hypoxia-induced pulmor Effects of alveolar hypoxia vasconstriction and remodeling chronic hypoxia

Definition of High-Altitude PH by the International Society of Mountain Medicine resting mPAP>30mmHg

Useh altitude definition: >2500 m above sea leve

Reversibility – Treatment

High –altitude PH **is reversible** upon reexposure to normoxia /see-level

Sildenafil / Bosentan

Conclusion

Model disease not well known

RCTs missing

Hypoventilation Syndromes

- What do they have in common?

 Alveolar hypoxia causing HPV, assumed to be the main driver of PH
- Without lung parenchymal damage

 Obesity hypoventilation syndrome

 Kyphoscoliosis

 Neuro/ Mascular dysfunction
- With lung parenchymal damage
 COPD
 Combined obstructive/restrictive diseases

Effect of NIV on Obesity Hypoventilation Syndrome-induced PH

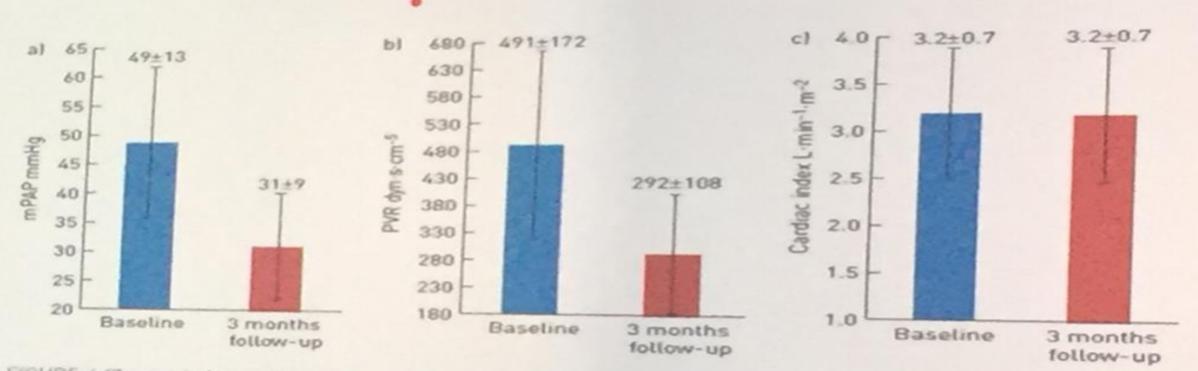
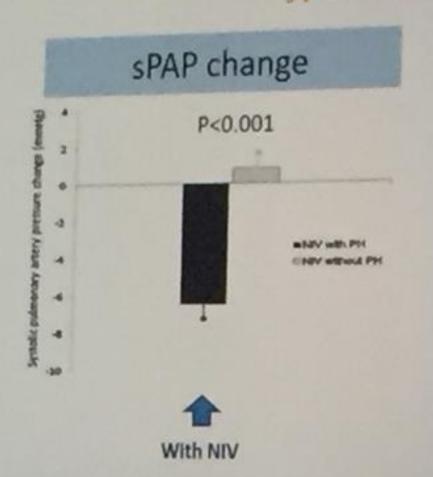
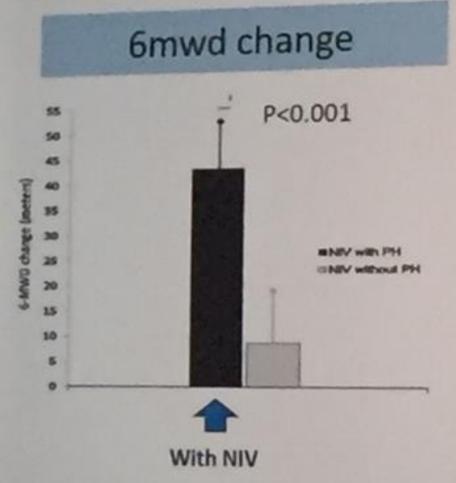




FIGURE 4 Changes in haemodynamic parameters after 3 months of noninvasive positive-pressure ventilation. a) Change in mean pulmonary artery pressure (mPAP), n=16; p<0.001. b) pulmonary vascular resistance (PVR), n=16; p<0.001. c) Change in cardiac index, n=15; p=0.807.

Effect of NIV on echocardiographic measures of PH in obesity hypoventilation syndrome

Coral et al. Thorax 2017, 64 patients with NIV versus 67 control patients; follow up period = xxx months?

Conclusion

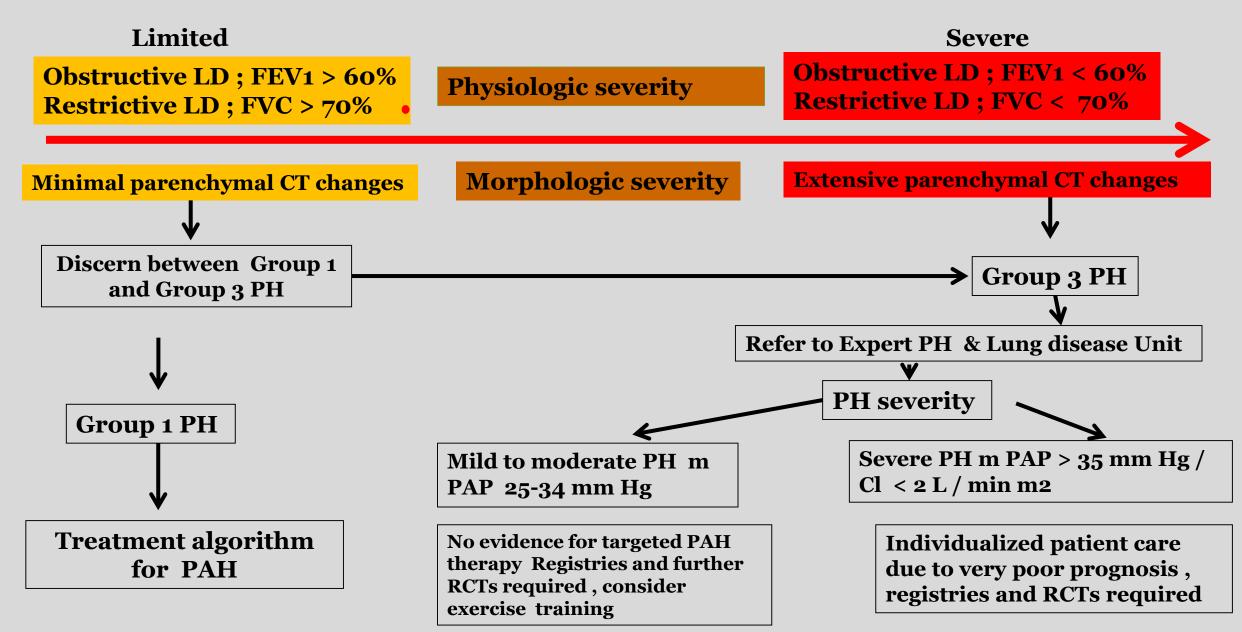
- Hypoventilation syndrome patients should be treated with NIV
- NIV reduces mPAP/PVR in hypoventilation syndrome patients with PH
- The extent to which the improvement of pulmonary hemodynamics contributes to the beneficial effect of NIV in hypoventilation syndrome patients is unclear
- NIV improves mortality in hypercapnic COPD patients, but link to PH is unclear

Recommendations for Pulmonary Hypertension due to Lung disease

2018

Treatment of PH in Lung Diseases
Evidence for appropriate benefit to risk ratio of
PAH approved drugs??

General


- 1. Treatment of underlying disease
- 2. No established vascular therapy except for LTOT in COPD
- 3. Rational for use PAH approved therapy?
 - PH contributes to limitation of exercise capacity
 - PH contributes to shortage of life expectancy?
 - Vascular abnormalities contribute to bronchial/parenchymal disease progression

	Recommendations	Class ^a	Level ^b
	Echocardiography is recommended for the non-invasive diagnostic assessment of suspected PH in patients with lung disease	-	С
	Referral to an expert centre is recommended ^d in patients with echocardiographic signs of severe PH and/or severe right ventricular dysfunction	-	С
	The optimal treatment of the underlying lung disease, including long-term O_2 therapy in patients with chronic hypoxaemia, is recommended in patients with PH due to lung diseases	-	С
	Referral to PH expert center should be considered for patients with signs of severe PH/severe RV failure for individual-based treatment	lla	С
	RHC is not recommended for suspected PH in patients with lung disease, unless therapeutic consequences are to be expected (e.g. lung transplantation, alternative diagnoses such as PAH or CTEPH, potential enrolment in a clinical trial)	Ш	C
I	The use of drugs approved for PAH is not recommended in patients with PH due to lung diseases	Ш	С

Effects of rehab in PH-chronic lung disease

- Evidence from 3 studies that rehab improves exercise capacity in CLD-PH
- No adverse effect reported in these studies
- Further studies needed:
 - Reproducible in larger trials with focus on PH-chronic lung disease?
 - Differences between various underlying lung diseases?
 - Long-term effects?
 - Impact on survival?

PH management in the setting of chronic lung disease

