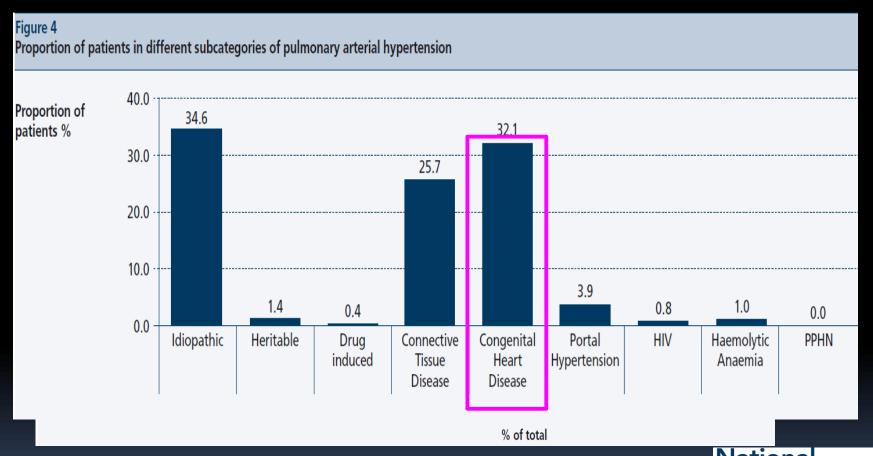
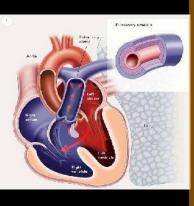


Imperial College London

PAH related to congenital heart disease in the adult

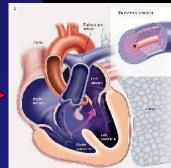

ΠΝΕΥΜΟΝΙΚΉ ΥΠΈΡΤΑΣΗ ΣΤΙΣ ΣΥΓΓΕΝΕΊΣ ΚΑΡΔΙΟΠΆΘΕΙΕΣ: UPDATE 2018

Kostas Dimopoulos MD MSc PhD FESC


Adult Congenital Heart Centre & Centre for Pulmonary Hypertension Royal Brompton Hospital & Imperial College London

London, UK

PAH-CHD: the most common type or PAH



National Audit of Pulmonary Hypertension 2013

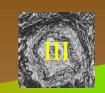
PAH associated with L-R shunt

Eisenmenger syndrome

Shunt

Histology

PVR


L-R

Bidirectional or RL shunt

Endothelial dysfunction
Shear stress & stretch Vascular Remodeling

PVR

Clinical classification of PAH-CHD

Four different classes of PAH-CHD ...plus a few more!

Table 2 Types of pulmonary arterial hypertension related to congenital heart disease

A. Eisenmenger syndrome

Includes all systemic-to-pulmonary shunts due to large defects leading to a severe increase in PVR and a reversed (pulmonary-to-systemic) or bidirectional shunt. Cyanosis, erythrocytosis, and multiple organ involvement are present

B. Pulmonary arterial hypertension associated with systemic-to-pulmonary shunts

Patients with moderate to large defects, in which the increase in PVR is mild to moderate, left—right shunt is still largely present, and no cyanosis is present at rest

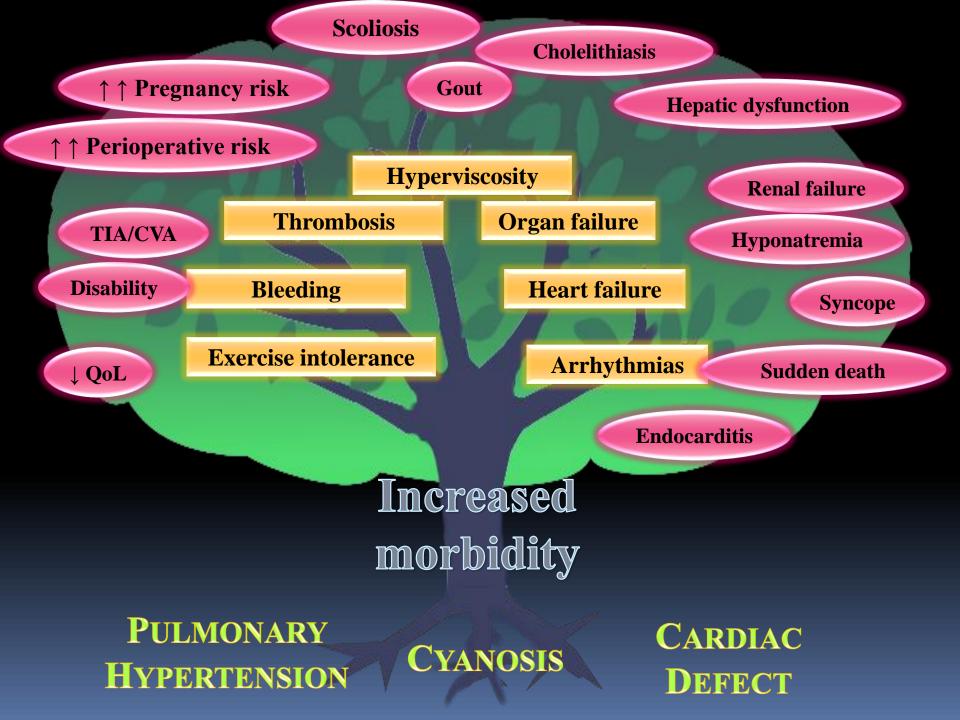
C Dulmanan autorial hunartancian with small defeate

Datients with a spinisal sistema vancsimilants idianathic DALL who boys (asin sidental) small defeater

Additional types of pulmonary vascular disease related to CHD

- Segmental pulmonary arterial hypertension

In these cases, part of the lung vasculature develops pulmonary vascular disease, while other areas may be normally perfused or hypoperfused


Raised PVR in Fontan patients

Patients with a previous Fontan-type operation can develop a rise in PVR, despite low pulmonary arterial pressures

Updated Clinical Classification of Pulmonary Hypertension

Gerald Simonneau, MD,* Michael A. Gatzoulis, MD, PhD,† Ian Adatia, MD,‡
David Celermajer, MD, PhD,§ Chris Denton, MD, PhD,|| Ardeschir Ghofrani, MD,¶
Miguel Angel Gomez Sanchez, MD,# R. Krishna Kumar, MD,** Michael Landzberg, MD,††
Roberto F. Machado, MD,†† Horst Olschewski, MD,§§ Ivan M. Robbins, MD,|||
Rogiero Souza, MD, PhD¶¶

Contents lists available at ScienceDirect

International Journal of Cardiology

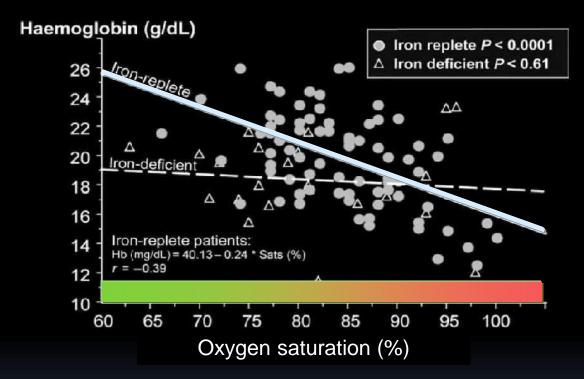
journal homepage: www.elsevier.com/locate/ijcard

Non-invasive assessment of liver changes in Eisenmenger patients

Siegrun Mebus ^{a,1}, Nicole Nagdyman ^{a,1}, Johanna Kügel ^a, Reinhart Zachoval ^b, Siegmund Lorenz Braun ^c, Guido Haverkämper ^d, Bernd Opgen-Rhein ^d, Felix Berger ^{d,e}, Sophia Horster ^b, Jörg Schoetzau ^a, Claudia Pujol Salvador ^a, Ulrike Bauer ^f, John Hess ^a, Peter Ewert ^a, Harald Kaemmerer ^{a,*}

Global assessment of hepatic alterations (n.a. = not available).

Patient	Functional class (Perloff)	Body mass index (kg/m ² body surface area)	Abdominal sonography (normal/abnormal)	Transient elastography	ARFI	Pathological laboratory findings	Elevated specific fibrosis marker	Global hep assessmen	
				staging of fibrosis	staging of fibrosis			hepatic alteration	kind of damage
AB	3	19.0	abnormal	0–1	0			no	
ES	3	21.0	abnormal	0–1	2			yes	fibrosis
SL	2	25.4	abnormal	0–1	0	total bilirubin		no	
JR	3	19.3	abnormal	0–1	2	total bilirubin	FIB-4 index	yes	fibrosis
SN	3	23.5	abnormal	0–1	0	total bilirubin	FIB-4 index	no	
KL	2	21.1	abnormal	0–1	2	GGT		yes	fibrosis
AG	3	30.5	normal	0–1	3	GGT, total bilirubin		yes	fibrosis
KH	3	25.3	abnormal	n.a.	0	total bilirubin		no	
JK	3	24.4	abnormal	n.a.	4			yes	cirrhosis
MN	3	20.0	n.a.	0–1	2	albumin	n.a.	yes	fibrosis

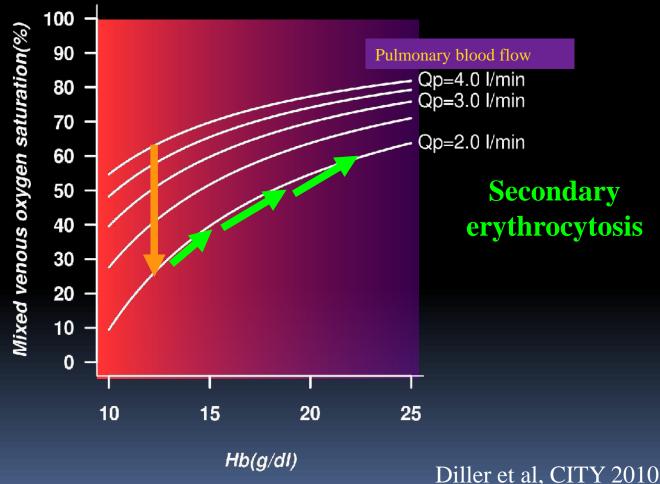

Bold: staging of liver fibrosis by transient elastography, ARFI and global hepatic assessment.

Bold: staging of liver fibrosis by transient elastography, ARFI and global hepatic assessment.

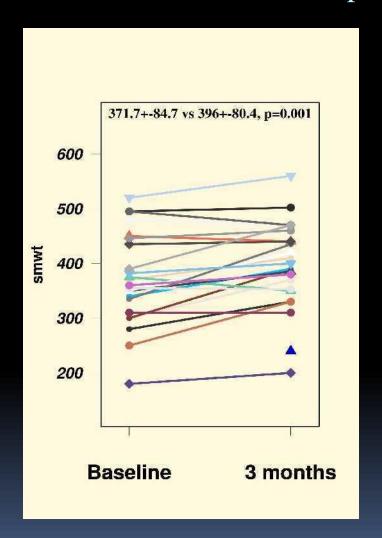
MN	3	20.0	n.a.	0–1	2	albumin	n.a.	yes	fibrosis
					4				cirrhosis

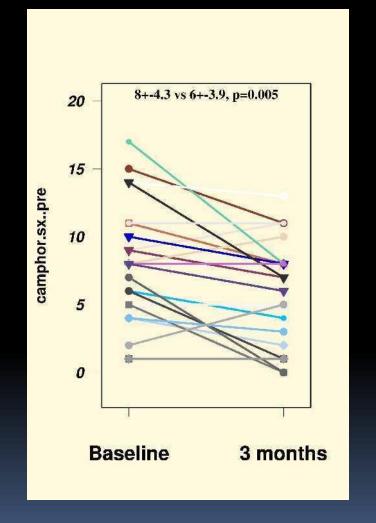
The haematologic effect of cyanosis

Prevalence of iron deficiency and relation to saturations



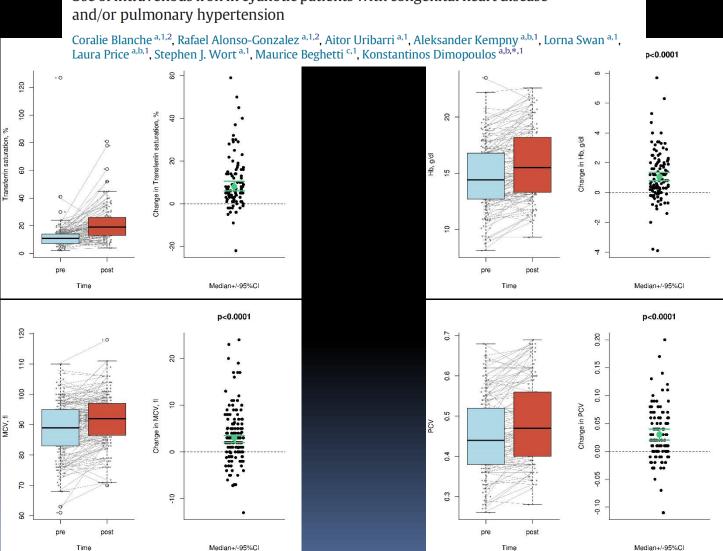
Prevalence of iron deficiency:


- > 20-37% of patients with cyanotic CHD
- > Easily overlooked as standard laboratory methods (Hb, MCV) do not apply


Why do cyanotic patients need a higher hemoglobin

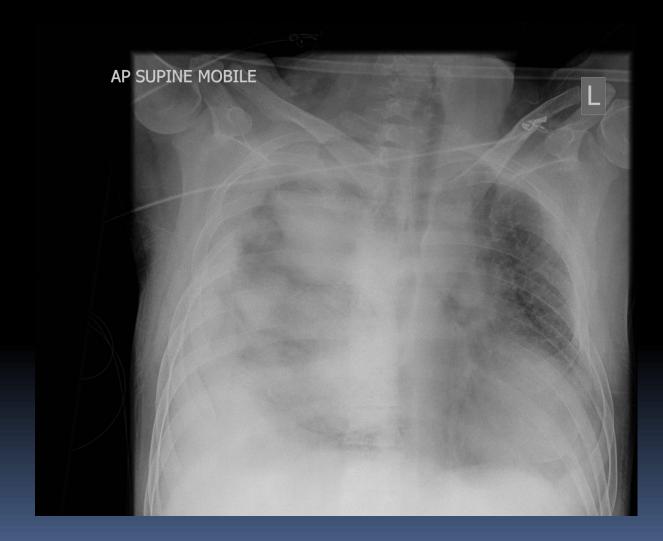
Erythrocytosis maintains adequate oxygen delivery to peripheral tissues

Iron supplementation in cyanotic ACHD: Exercise capacity and QoL

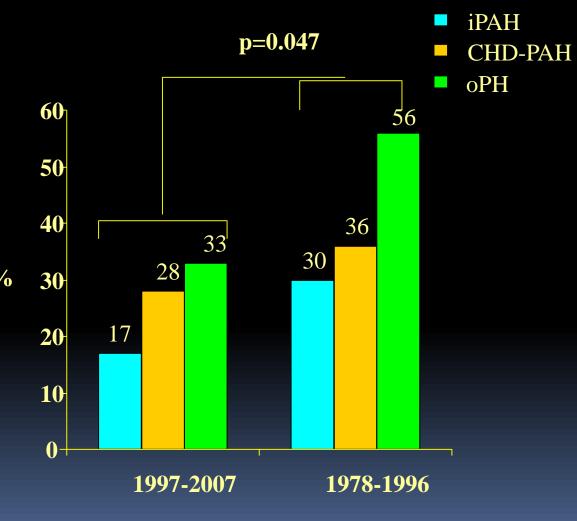


International Journal of Cardiology

CARDIOLOGY


journal homepage: www.elsevier.com/locate/ijcard

Use of intravenous iron in cyanotic patients with congenital heart disease


Haemodynamic collapse

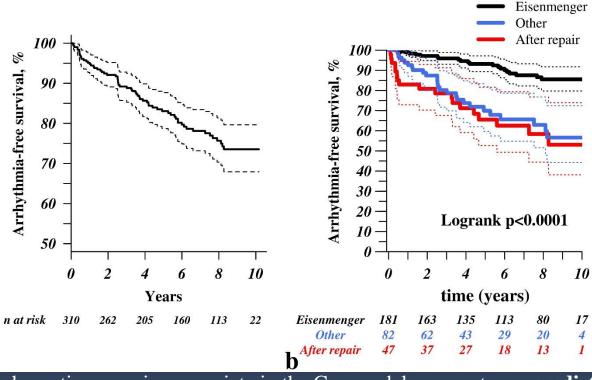
Mortality risk of pregnancy in PAH related to CHD

- Maternal mortality risk 30%
- Baby growth retardation risk 80%: premature
- Risk of spontaneous abortions
- Also interruption of pregnancy carries significant risks

Bedard, Dimopoulos, Gatzoulis, EHJ 2009

Eisenmenger Syndrome in Pregnancy: When Is It Time for ECMO?: A Case Report

Marie-Louise Meng, MD,* Annie Fu, MD,† Carolyn Westhoff, MD,† Matthew Bacchetta, MD,‡ Erika B. Rosenzweig, MD,§ Ruth Landau, MD,* and Richard Smiley, MD, PhD*


We report the case of a 21-year-old primiparous woman at 22 weeks gestation who presented with a large uncorrected ventricular septal defect, severe pulmonary hypertension, and Eisenmenger syndrome. The patient elected for termination of pregnancy, which was performed under regional anesthesia. Hemodynamic changes apparently associated with uterine contraction immediately after termination resulted in increased right to left shunting across the ventricular septal defect requiring urgent venovenous extracorporeal membrane oxygenation. Thrombocytopenia and systemic anticoagulation for extracorporeal membrane oxygenation presented a challenge for removal of the epidural catheter. Pulmonary hypertension was managed and she was discharged on postoperative day 35. (A&A Practice. XXX;XXX:00–00.)

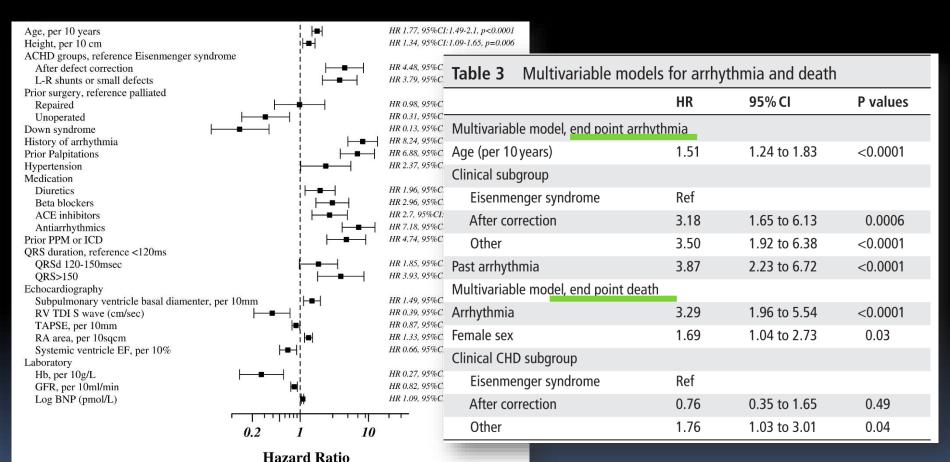
requiring urgent venovenous extracorporeal membrane oxygenation. Thrombocytopenia and systemic anticoagulation for extracorporeal membrane oxygenation presented a challenge for removal of the epidural catheter. Pulmonary hypertension was managed and she was discharged on postoperative day 35. (A&A Practice. XXX;XXX:00–00.)

ORIGINAL RESEARCH ARTICLE

Arrhythmias in adult patients with congenital heart disease and pulmonary arterial hypertension

Heart 2018;**0**:1–7
Maria Drakopoulou, ^{1,2} Heba Nashat, ¹ Aleksander Kempny, ¹ Rafael Alonso-Gonzalez, ¹
Lorna Swan, ¹ Stephen J Wort, ¹ Laura C Price, ¹ Colm McCabe, ¹ Tom Wong, ¹
Michael A Gatzoulis, ¹ Sabine Ernst, ¹ Konstantinos Dimopoulos ¹

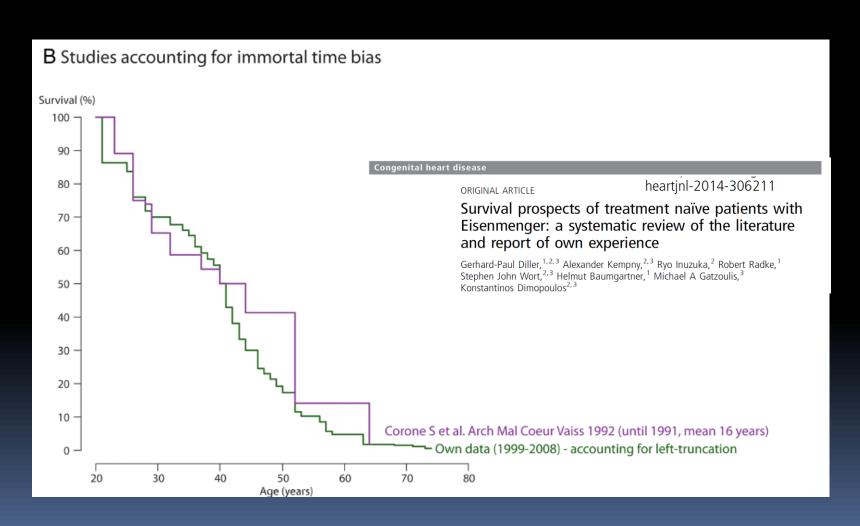
Arrhythmia, used as a time-varying covariate in the Cox model, was a strong predictor of death


HR 3.41, 95% CI: 2.10-5.53, p<0.0001

Predictors of new arrhythmia in PAH-CHD and relation to mortality

ORIGINAL RESEARCH ARTICLE

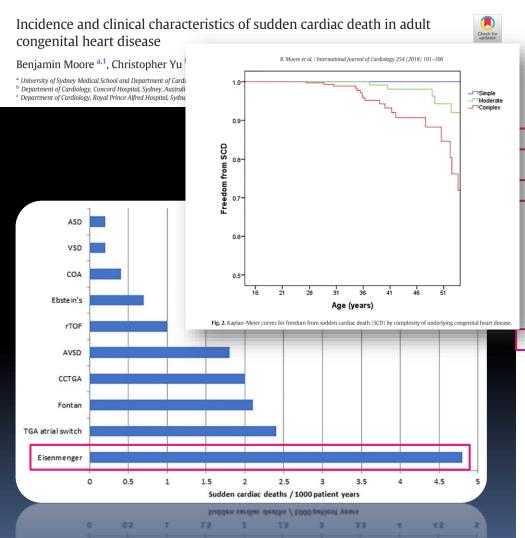
Arrhythmias in adult patients with congenital heart disease and pulmonary arterial hypertension


Heart 2018;0:1–7
Maria Drakopoulou, ^{1,2} Heba Nashat, ¹ Aleksander Kempny, ¹ Rafael Alonso-Gonzalez, ¹
Lorna Swan, ¹ Stephen J Wort, ¹ Laura C Price, ¹ Colm McCabe, ¹ Tom Wong, ¹
Michael A Gatzoulis, ¹ Sabine Ernst, ¹ Konstantinos Dimopoulos ¹

Arrhythmia, used as a time-varying covariate in the Cox model, was a strong predictor of death

HR 3.41, 95%CI: 2.10-5.53, p<0.0001

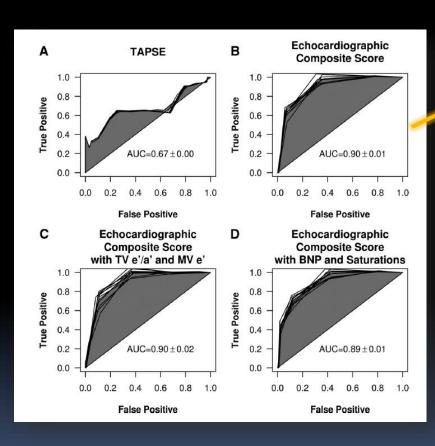
The true survival of Eisenmenger patients



Contents lists available at ScienceDirect

International Journal of Cardiology

journal homepage: www.elsevier.com/locate/ijcard


Table 2Clinical characteristics of sudden cardiac death cases

Clinical characteristics of sudden cardiac death cases.	
Characteristic	n (%)
Complexity	
Simple	2(6)
Moderate	13 (37)
Severe	20 (57)
Syndrome as cause of defect	7 (20)
Previous cerebrovascular event	4 (12)
Chronic kidney disease ^a	5 (14)
Atrial arrhythmia	15 (43)
Pacemaker	2 (6)
NYHA III–IV symptoms	11 (31)
Heart failure symptoms	13 (37)
Heart failure admission ^b	10 (29)
Palpitations	12 (34)
Syncope	5 (14)
Anti-arrhythmic medication	4(11)
Digoxin	4 (11)
Heart failure medication	15 (43)
Anticoagulation	8 (23)
Advanced pulmonary hypertension therapy	4 (11)
Systemic ventricle moderate-severely impaired	4 (11)
Systemic ventricle moderate-severely dilated	7 (20)
Subpulmonary ventricle moderate-severely impaired	3 (9)
Subpulmonary ventricle moderate-severely dilated	10 (29)
Moderate-severe systemic AV valve regurgitation	8 (23)
Systemic venous atrium moderate-severely dilated	8 (23)
Rhythm on ECG at last follow up	
Sinus	21 (60)
Atrial arrhythmia	5 (14)
Paced	1 (3)
QRS width (ms, \pm SD)	132 ± 33
$QTc (ms, \pm SD)$	452 ± 37

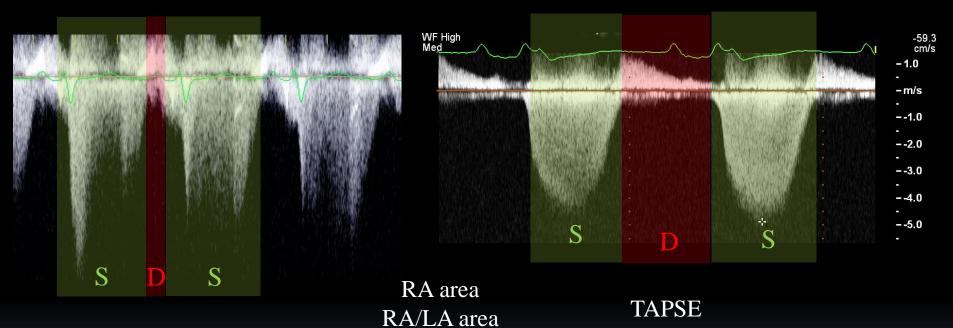
 $^{^{\}rm a}\,$ Chronic kidney disease defined as glomerular filtration rate < 60 mL/min. on multiple sequential tests.

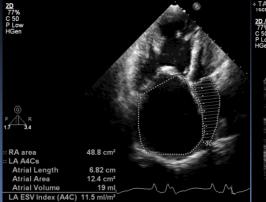
 $^{^{\}rm b}$ Within the 2 years preceding sudden cardiac death. NYHA = New York Heart Association, AV = atrio-ventricular.

Echocardiographic Composite score

Composite score

- TAPSE<15mm
- Systole/diastole time on $TR \ge 1.5$
- RA area $\geq 25 \text{cm}^2$
- RA area/LA area ratio ≥ 1.5

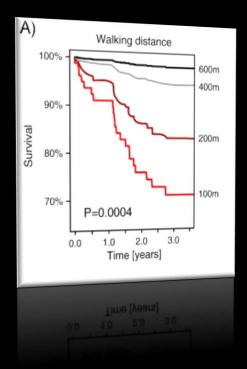

Echocardiographic Predictors of Outcome in Eisenmenger Syndrome

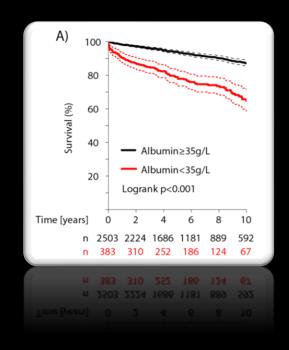

(Circulation, 2012;126:1461-1468.)

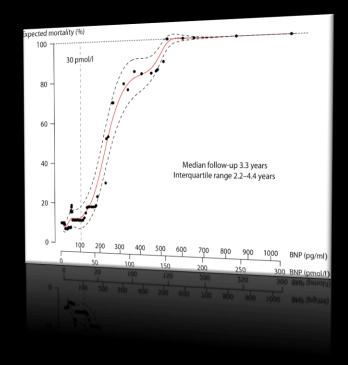
Pamela Moceri, MD; Konstantinos Dimopoulos, MD, MSc, PhD, FESC; Emmanouil Liodakis, MD;
 Ioannis Germanakis, MD; Aleksander Kempny, MD; Gerhard-Paul Diller, MD, PhD;
 Lorna Swan, MB, ChB, MD, FRCP; Stephen J. Wort, MA, MBBS, FRCP, PhD; Philip S. Marino, MD;
 Michael A. Gatzoulis, MD, PhD, FESC; Wei Li, MD, PhD, FESC

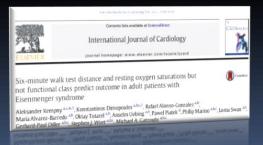
Example of composite score

Systole/Diastole duration






Composite score


- TAPSE<15mm
- Systole/diastole time on TR ≥1.5
- RA area $\geq 25 \text{cm}^2$
- RA area/LA area ratio ≥ 1.5

6MWD, Albumin and BNP in Eisenmenger syndrome

ORIGINAL ARTICLE

Hypoalbuminaemia predicts outcome in adult patients with congenital heart disease

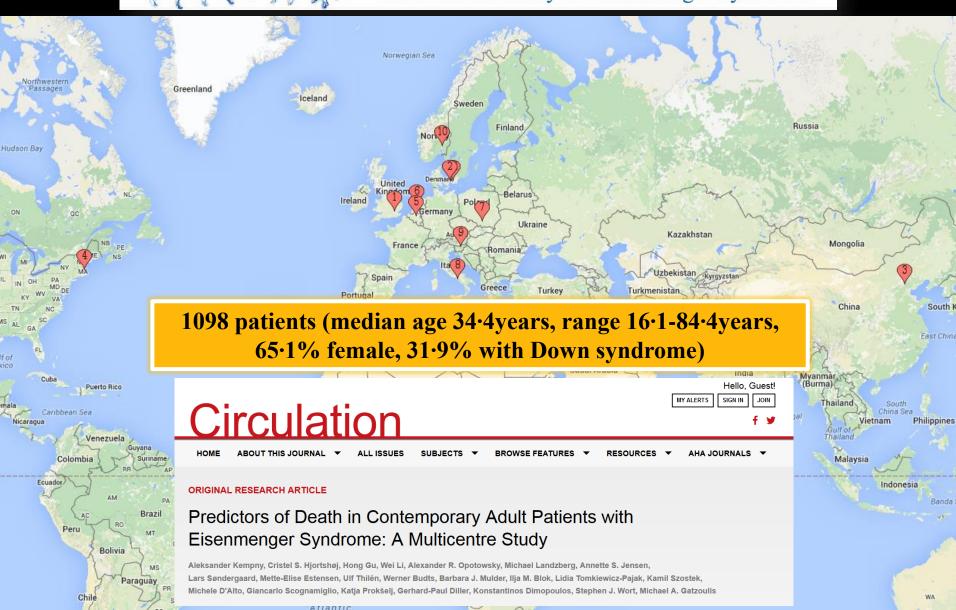
Aleksander Kempny, 1,2,3,4 Gerhard-Paul Diller, 1,2,3,4 Rafael Alonso-Gonzalez, 1,2,3

Anselm Uebing, 1,2,3 Isma Rafig, 1,2 Wei Li, 1,2,3 Lorna Swan, 1,2,3 James Hooper, 1,2,3

Jackie Donovan, 1,2,3 Stephen J Wort, 1,2,3 Michael A Gatzoulis, 1,2,3

Konstantinos Dimopoulos 1,2,3

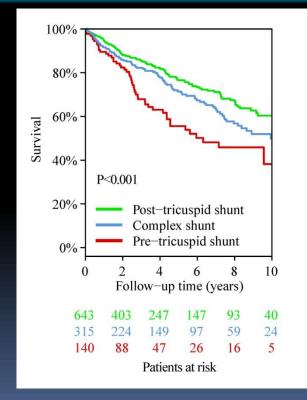
ORIGINAL ARTICLE


B-type natriuretic peptide concentrations in contemporary Eisenmenger syndrome patients: predictive value and response to disease targeting therapy

Gerhard-Pau Diller, ^{1,2} Rafael Alonso-Gonzalez, ¹ Aleksander Kempny, ¹ Konstantinos Dimopoulos, ^{1,2} Ryo Inuzuka, ¹ Georgios Giannakoulas, ¹ Lianne Castle, ¹ Astrid E Lammers, ¹ James Hoope, ³ Anselm Uebing, ¹ Lorna Swan, ¹ Michael Gatzoulis, ^{1,2} Stephen J Wort, ^{2,2}

The MUSES study

MUlti-centre Study on Eisenmenger Syndrome



The MUSES study

MUlti-centre Study on Eisenmenger Syndrome

Parameter	Unit	HR	95% CI	P-value
Age	10years	1.35	1.14 - 1.61	<0.001
Pre-tricuspid shunt	-	1.97	1.12 - 3.46	0.019
Oxygen saturation at rest	10%	0.61	0.46 - 0.82	<0.001
Six minute walking distance	100m	0.67	0.54 - 0.82	<0.001
Presence of pericardial effusion	-	2.35	1.33 - 4.13	0.003

The MUSES study

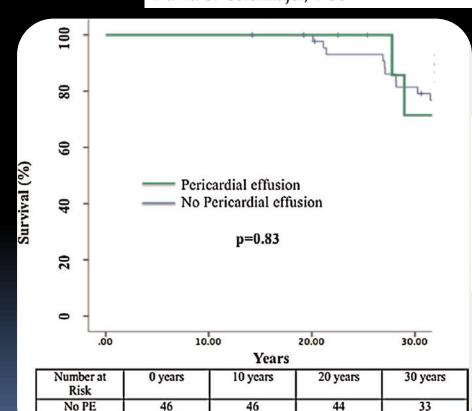
MUlti-centre Study on Eisenmenger Syndrome

Pre-tricuspid shunt								Post-tricuspid or complex shunt						t								
			PE	abs	ent			PE	pres	sent		Age		PE	abs	bsent			PE present			
93	600	23	19	15	12	9	48	40	33	27	21		12	10	8	6	5	28	22	18	14	11
6MWT distance	500	33	26	21	17	14	62	53	44	36	30		18	14	11	9	7	38	31	25	20	16
T di	400	44	36	30	24	19	75	67	57	49	40	50	25	20	16	13	10	50	42	35	28	23
MM	300	57	48	40	33	27	87	80	71	62	53		34	28	23	18	14	64	55	46	38	31
19	200	71	62	53	44	37	95	91	84	76	67		46	38	31	25	20	78	69	60	51	43
es	600	18	14	11	9	7	38	31	25	20	16		9	7	6	4	3	21	17	13	10	8
stan	500	25	20	16	13	10	50	42	34	28	23		13	10	8	6	5	29	24	19	15	12
6MWT distance	400	34	28	22	18	14	64	55	46	38	31	40	19	15	12	9	7	40	33	26	21	17
ΛW	300	46	38	31	25	20	78	69	60	51	42		26	21	17	13	11	52	44	36	30	24
19	200	59	50	42	35	28	89	82	74	65	55		36	29	24	19	15	66	57	48	40	33
es	600	13	10	8	6	5	29	23	19	15	12		7	5	4	3	3	16	12	10	8	6
6MWT distance	500	19	15	12	9	7	39	32	26	21	17		10	8	6	5	4	22	18	14	11	9
T di	400	26	21	17	13	11	52	44	36	29	24	30	14	11	9	7	5	31	25	20	16	13
MW	300	36	29	24	19	15	66	57	48	40	33		20	16	13	10	8	41	34	28	22	18
[9	200	48	40	33	27	21	80	71	62	53	44		28	22	18	14	11	54	46	38	31	25
ce	600	10	8	6	5	4	22	18	14	11	9		5	4	3	2	2	12	9	7	6	4
stan	500	14	11	9	7	5	30	25	20	16	13		7	6	4	3	3	16	13	10	8	6
T di	400	20	16	12	10	8	41	34	28	22	18	20	10	8	6	5	4	23	19	15	12	9
6MWT distance	300	27	22	18	14	11	54	46	38	31	25		15	12	9	7	6	32	26	21	17	13
19	200	38	31	25	20	16	68	59	50	42	35		21	17	13	10	8	43	36	29	24	19
		70	75	80	85	90	70	75	80	85	90		70	75	80	85	90	70	75	80	85	90
SO_2 at rest (%) SO_2 at rest (%)					S	O_2 a	t re	st (%	6)	S	O_2 a	t re	st (%	6)								

Color scale for 5-years mortality:

≤10% (10%-20%]

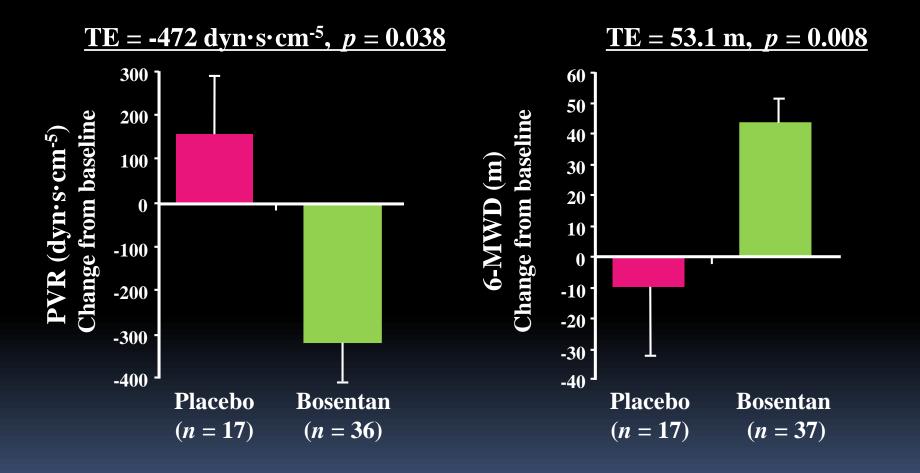
(20%-30%] (30%-40%] (40%-50%] (50%-60%]



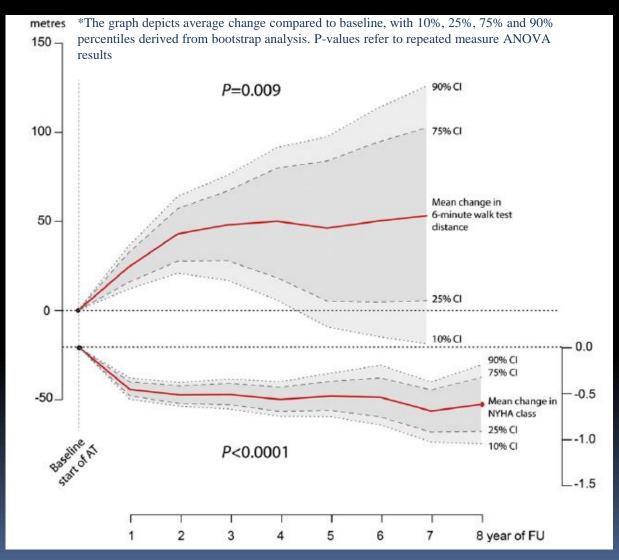
Data from Kempny et al,
Circulation 2017

The Echocardiographic Characteristics and Prognostic Significance of Pericardial Effusions in Eisenmenger Syndrome

Clare Arnott, MBBS ^{a,b}, Rachael Cordina, PhD ^{a,b}, David S. Celermajer, DSc ^{a,b*}


PE

PE


Statistical Analysis

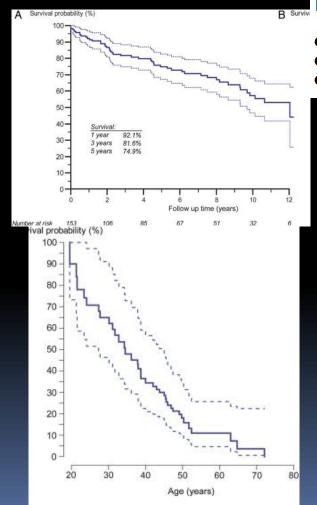
Data was analysed using SPSS version 22.0 (IBM, New York, USA). Comparisons between groups were undertaken using Chi² for categorical data. A two-tailed p-value of <0.05 was considered statistically significant. Survival analysis for mortality was estimated using Kaplan-Meier survival curves and Cox proportional hazard models [7].

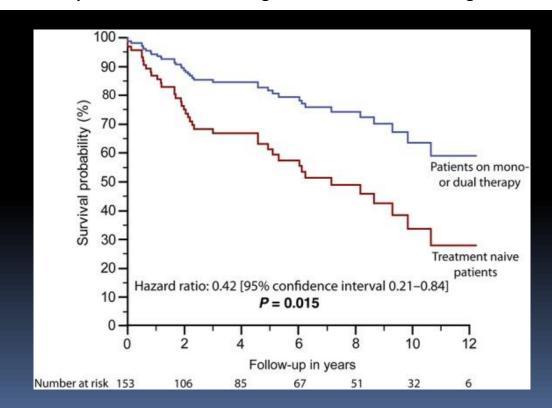
BREATHE-5: Reduced PVR and increased 6-MWD

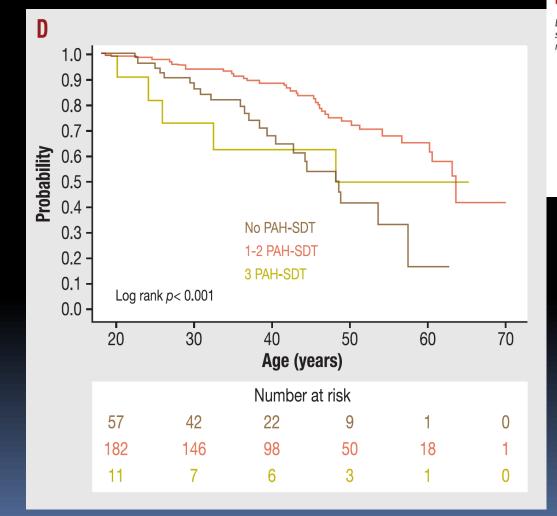
Long-term effect of PAH-advanced therapies in Eisenmenger patients

PAH advanced therapies are associated with an improved outcome in Eisenmenger patients

A retrospective, single-centre study in 229 patients with ES




Dimopoulos K, Inuzuka R, et al. Circulation 2010; 121:20-5.



Current therapy and outcome of Eisenmenger syndrome: data of the German National Register for congenital heart defects

Gerhard-Paul Diller^{1,2*}, Marc-André Körten³, Ulrike M.M. Bauer^{2,3}, Oliver Miera⁴, Oktay Tutarel^{2,5}, Harald Kaemmerer^{2,6}, Felix Berger^{2,4}, Helmut Baumgartner^{1,2}, and German Competence Network for Congenital Heart Defects Investigators

Archives of Cardiovascular Disease (2017) 110, 303-316

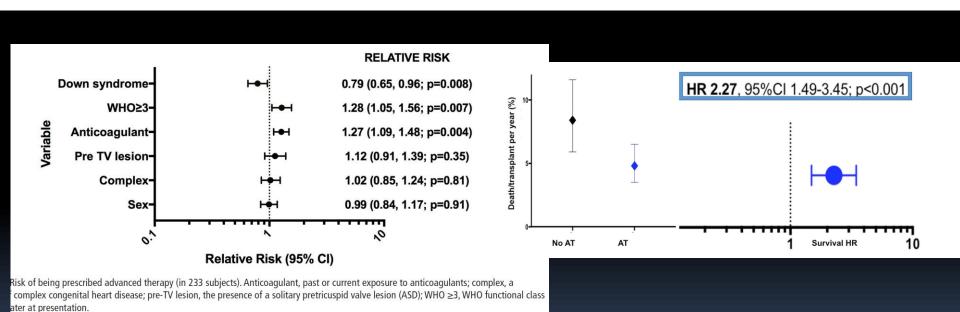
Available online at

ScienceDirect www.sciencedirect.com Elsevier Masson France EM consulte www.em-consulte.com/en

CLINICAL RESEARCH

Outcome of adults with Eisenmenger syndrome treated with drugs specific to pulmonary arterial hypertension: A French multicentre study

Devenir des adultes avec syndrome d'Eisenmenger traités par médicaments spécifiques anti-hypertenseur pulmonaire : données d'une étude multicentrique française


> Sebastien Hascoet a,b,*, Emmanuelle Fournier a,b,c, Xavier Jais d,e, Lauriane Le Gloanf, Claire Dauphing, Ali Houeijehh, Francois Godarth, Xavier Iriartc, Adelaïde Richardi, Jelena Radojevici, Pascal Amedrok, Gilles Bosserl, Nathalie Souletiem, Yvette Bernardⁿ, Pamela Moceri^o, Hélène Bouvaist^p, Pierre Mauran^q, Elise Barre^r, Adeline Basquin^s, Clement Karsenty ^{m.t.u}, Damien Bonnet^v, Laurence Iserin^{t.u}, Olivier Sitbon ^{d.e}, Jérôme Petit^{a,b}, Elie Fadel e,w,x, Marc Humbert d,e, Magalie Ladouceur t,u,v

ORIGINAL RESEARCH ARTICLE

Heart 2018;**104**:732–737

Pulmonary vasodilator therapy is associated with greater survival in Eisenmenger syndrome

Clare Arnott, ^{1,2} Geoff Strange, ^{3,4} Andrew Bullock, ^{5,6} Adrienne C Kirby, ⁷ Clare O'Donnell, ^{8,9} Dorothy J Radford, ^{10,11} Leeanne E Grigg, ^{12,13} David S Celermajer ^{1,2}

On multivariable analysis, exposure to AT was independently associated with greater survival (survival HR 2.27, 95% CI 1.49 to 3.45; p<0.001).

MAESTRO

European Heart Journal

Submit ▼

More Content ▼

Volume 38, Issue suppl_1

August 2017

Comments (0)

Issues

	Placebo	Macitentan	Treatment effect*
	Mean change fr 16 (SD)	om baseline to Week	Least-square mean difference (95% CL)
6MWD, m (main study: n=226)	19.7 (53.0)	18.3 (84.4)	-4.7 (-22.8, 13.5), p=0.6120
6MWD, m (substudy: n=39)	3.5 (51.6)	34.1 (57.4)	24.9 (-9.1, 59.0)
	% of baseline a (Geometric mea		Geometric mean ratio (95% CL)
NT-proBNP, pg/mL (main study: n=210)	109.2 (70.5)	88.7 (57.7)	0.80 (0.68, 0.94)
PVRi, dyn·sec/cm ⁵ /m ² (substudy: n=39)	101.1 (21.2)	85.3 (36.1)	0.87 (0.73, 1.03)

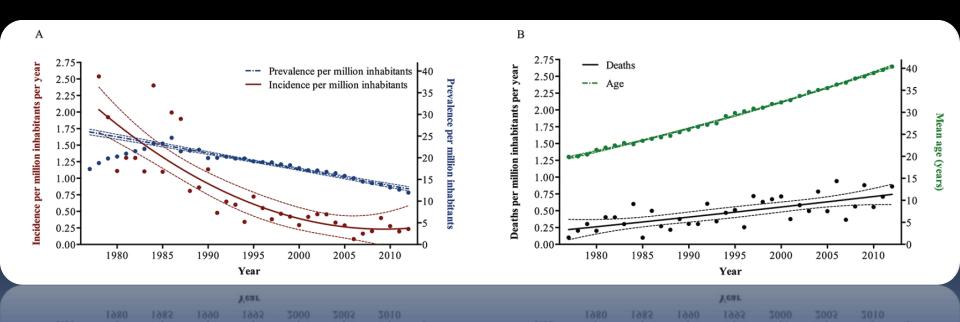
N. Galie, M. Landzbei
M.A. Gatzoulis
European Heart Jour
https://doi.org/10.10
Published: 29 Augu

Purchase

Evaluation c Eisenmenge randomised

P5462

*From ANCOVA model adjusted for treatment and baseline variables. CL, confidence limit; gCV, geometric coefficient of variation; PVRi: pulmonary vascular resistance index; SD, standard deviation.

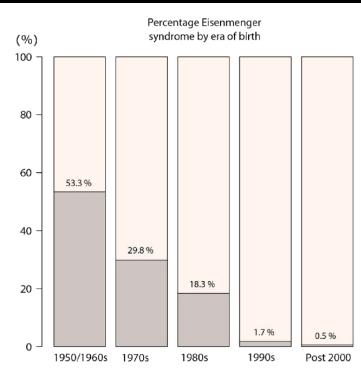

- The primary endpoint evaluating change in 6MWD was not met.
- NT-proBNP improved
- PVRi in the haemodynamic substudy favoured macitentan.
- Macitentan was well tolerated in this patient population.

ORIGINAL RESEARCH ARTICLE

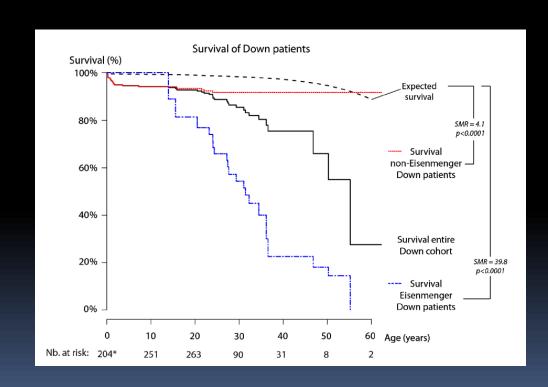
Heart 2017;**103**:1353–1358.

Epidemiological changes in Eisenmenger syndrome in the Nordic region in 1977–2012

Cristel Sørensen Hjortshøj, ¹ Annette Schophuus Jensen, ¹ Keld Sørensen, ² Edit Nagy, ³ Bengt Johansson, ⁴ Thomas Kronvall, ⁵ Mikael Dellborg, ⁶ Mette-Elise Estensen, ⁷ Henrik Holmstrøm, ⁸ Maila Turanlahti, ⁹ Ulf Thilén, ¹⁰ Lars Søndergaard ¹



Congenital heart disease


ORIGINAL ARTICLE

Eisenmenger syndrome and long-term survival in patients with Down syndrome and congenital heart disease Körten M-A, et al. Heart 2016;102:1552–1557

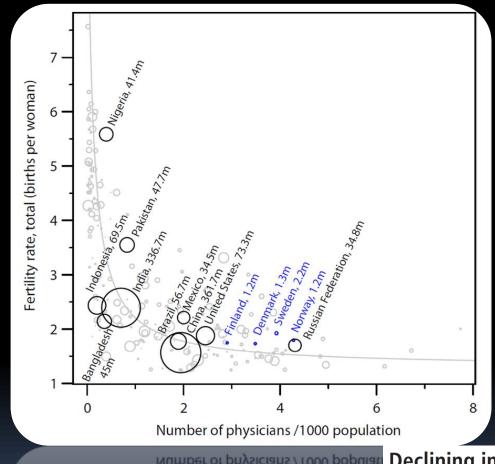

Marc-André Körten, ^{1,2,3} Paul C Helm, ^{1,2,3} Hashim Abdul-Khaliq, ^{2,4} Helmut Baumgartner, ^{1,2,3,5} Deniz Kececioglu, ^{1,3,6} Christian Schlensak, ^{2,3,7} Ulrike M M Bauer, ^{1,2,3} Gerhard-Paul Diller, ^{2,3,5} Competence Network for Congenital Heart Defects Investigators

Figure 2 Percentage of patients developing Eisenmenger syndrome by era of birth.

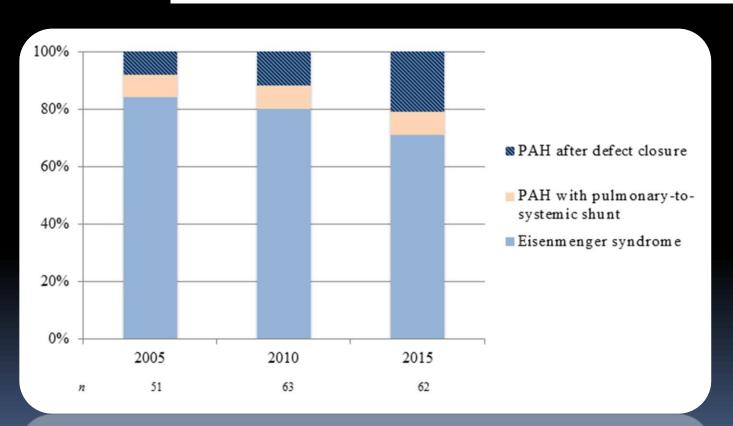
Eisenmenger syndrome in developing countries

Declining incidence and prevalence of Eisenmenger syndrome in the developed world: a triumph of modern medicine

Kempny A, et al. Heart September 2017 Vol 103 No 17 Aleksander Kempny, ^{1,2} Konstantinos Dimopoulos, ^{1,2} Michael A Gatzoulis^{1,2} What about other types of PAH-CHD?

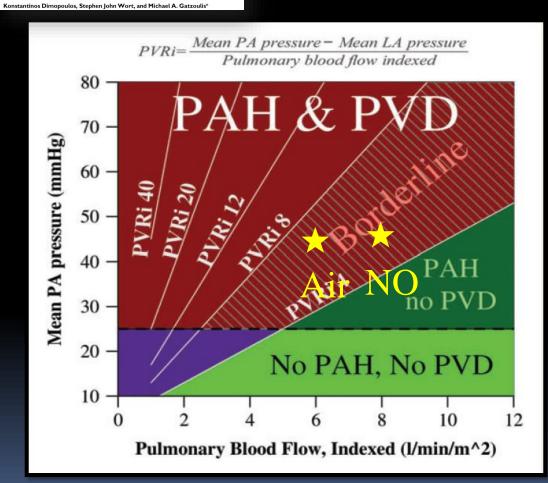
2010

Review


2005

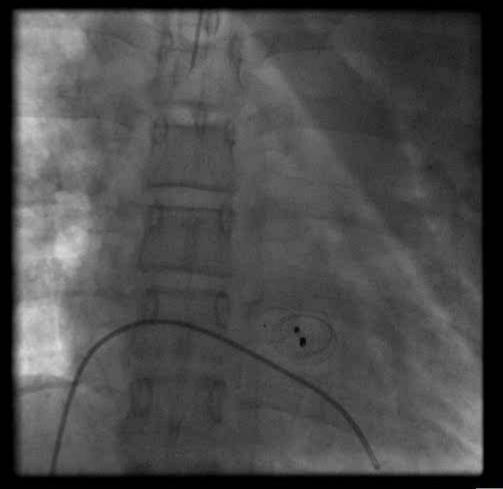
The Changing Landscape of Pulmonary Arterial Hypertension in the Adult with Congenital Heart Disease

Alexandra C. van Dissel 1,2, Barbara J. M. Mulder 1,2 and Berto J. Bouma 1,*


62

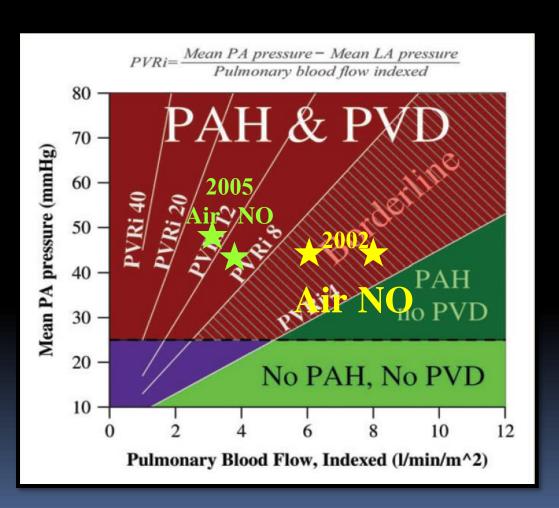
2015

Age 12 years VSD, PFO


AIR Qp/Qs = 2 $QPi 6 L/min/m^{2}$ mPAP 44 mmHg $PVRi 6.5 WU x m^{2}$

NO Qp/Qs = 3 $Qpi \ 8 \ L/min/m^2$ $mPAP \ 44 \ mmHg$

PVRi dropped from 6.5 to 4.8 WU x m²


VSD closure (13 years)

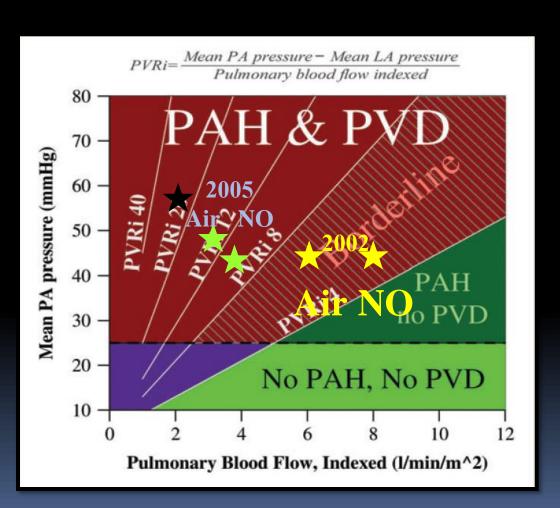
14mm Amplatzer perimembranous VSD occluder

The RV pressure post-deployment 48/8 mmHg

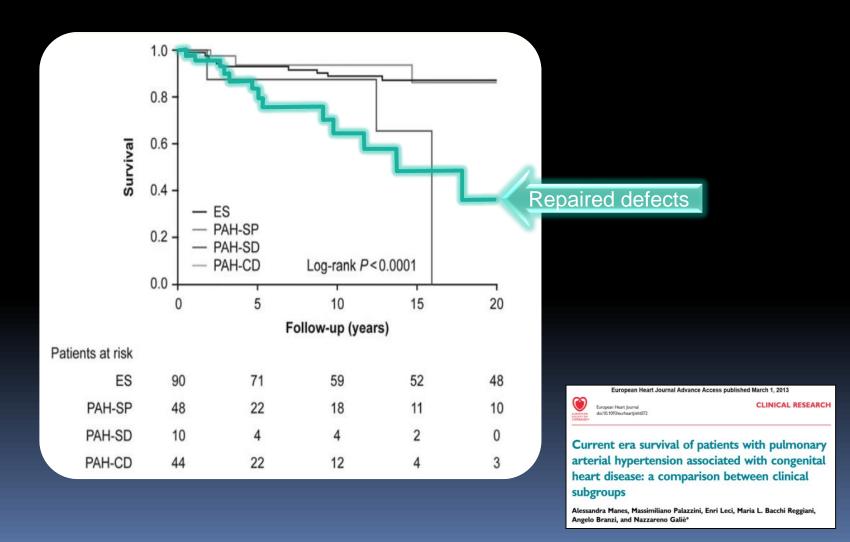
Cardiac catheterization (15 years)


Qp/Qs = 1 Qp 3.2 L/min/m2 PVRi 13.4 WU x m2

PVRi increased from 6.5 (12y) to 13.4 (15y) WU x m2


Admission at 23 weeks of pregnancy (November 2016)

- Haemoptysis related to an **upper respiratory infection**
- Increasing SOB
- Presyncope on effort
- AICU for advanced monitoring
- IV epoprostenol* and escalation of therapy by 1-2ng/kg/min according to tolerance
- Required respiratory support with CPAP and high flow O₂


Cardiac catheter 3 months post partum

Qp/Qs 0.67, PVR 16 WU, **PVRi 26**

TRIPLE THERAPY
CONTRACEPTION
TRANSPLANTATION

DO NOT close defects in established pulmonary vascular disease

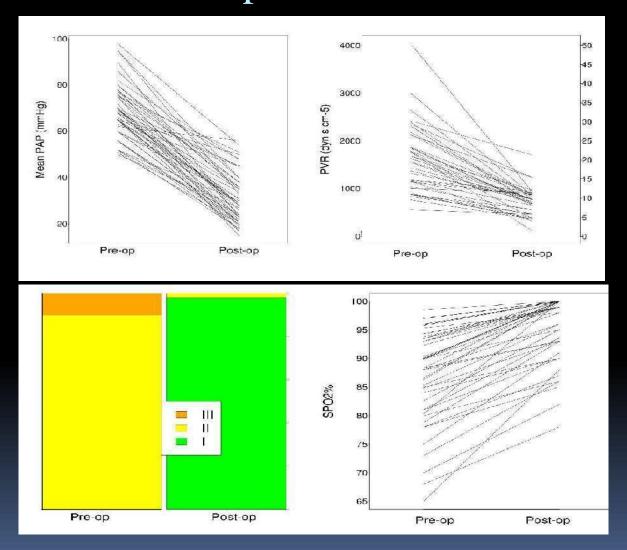
"Treat and repair"

International Journal of Cardiology 129 (2008) 163-171

Review

Evaluating operability in adults with congenital heart disease and the role of pretreatment with targeted pulmonary arterial hypertension therapy

Konstantinos Dimopoulos*, Ana Peset, Michael A. Gatzoulis


Abstract

Pulmonary arterial hypertension (PAH) associated with congenital heart disease remains a major problem despite advances in cardiac surgery. Recently, advanced therapies for PAH have become available and have been effective in reducing pulmonary vascular resistance and symptoms in patients with near-systemic pulmonary arterial pressures, previously thought to have irreversible pulmonary vascular disease. This has led to a new dilemma, namely could intracardiac communications previously considered inoperable due to severe pulmonary vascular disease become amenable to surgery after successful treatment with advanced therapy? We address, hereby, the potential merits and hazards of a "treat-and-repair" approach using advanced therapies in patients with PAH associated with congenital heart disease.

© 2008 Elsevier Ireland Ltd. All rights reserved.

IN 2017: THERE IS STILL NO EVIDENCE FOR TREATING WITH PAH THERAPIES AND REPAIRING PREVIOUSLY INOPERABLE DEFECTS.

Repair of defects previously considered nonrepairable

Treat and Repair Strategy in Patients With Atrial Septal **Defect and Significant Pulmonary Arterial Hypertension**

Yasufumi Kijima, MD, PhD; Teiji Akagi, MD, PhD; Yoichi Takaya, MD, PhD; Satoshi Akagi, MD, PhD; Koji Nakagawa, MD, PhD; Kengo Kusano, MD, PhD; Shunji Sano, MD, PhD; Hiroshi Ito, MD, PhD

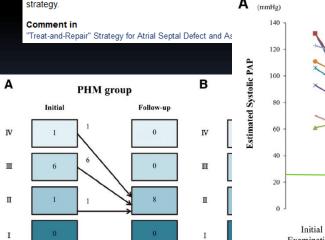
See 1 citation found by title matching your search:

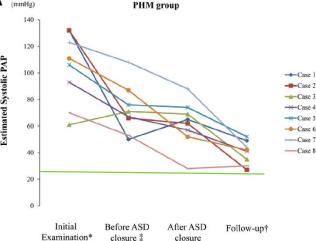
Circ J. 2016;80(1):227-34. doi: 10.1253/circj.CJ-15-0599. Epub 2015 Nov 13

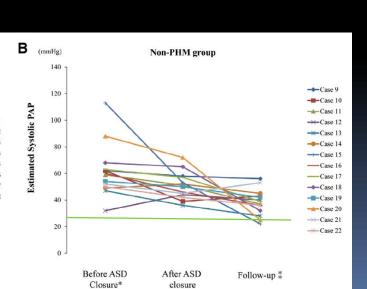
ASD and significant PAH. Long-term hemodynamic for

Treat and Repair Strategy in Patients With Atrial Septal Defect and Significant Pulmonary Arterial Hypertension.

Kijima Y¹, Akaqi T, Takaya Y, Akaqi S, Nakaqawa K, Kusano K, Sano S, Ito H.


Author information


Abstract


BACKGROUND: A therapeutic strategy in patients with atrial septal defect (ASD) and significant pulmonary arterial hypertension (PAH) remains controversial. This study aimed to assess the effect of PAH-specific medications and subsequent transcatheter shunt closure (ie, a treat and repair strategy) in these patients.

METHODS AND RESULTS: Among 646 patients with ASD, 22 patients (mean age of 56±20 years) who had PAH [mean pulmonary artery pressure ≥25 mmHg and pulmonary vascular resistance (PVR) ≥3 Wood units] underwent successful transcatheter ASD closure. Prior to the procedure, 8 patients received PAH-specific medications (PHM group) and 14 patients did not (non-PHM group). Initially, the PHM group had higher PVR compared with non-PHM group (9.6±3.8 vs. 4.2±1.0 Wood units, P<0.01). After treatment with PAH-specific medications, PVR in this group decreased to 4.0±0.8 Wood units (P<0.01). No adverse events were observed in either the PHM or non-PHM group during or after the transcatheter procedure. In the PHM group, during a treatment period of 52±48 months, the World Health Organization Functional Classification significantly improved (3.0±0.5 to 2.0±0.0, P<0.01), as well as in the non-PHM group (2.1±0.6 to 1.5±0.5, P<0.01).

CONCLUSIONS: Treat and repair strategy provided substantial improvement and no worsening of the WHO-FC, even in patients with

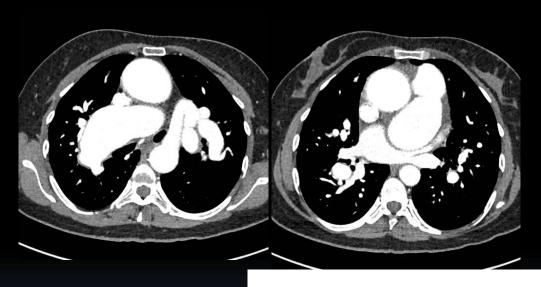
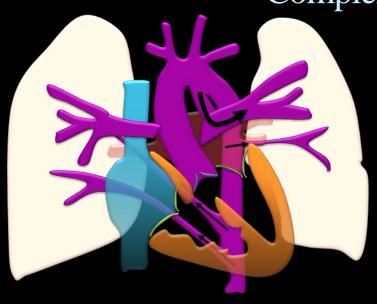


Table 1. Cardiac catheterization data for Patient EJ.

Late diagn	osis of theTC	GA VSD)		PAP (Sy	s/						
Age	PAH-specific therapies		Condition		Dia/Mea mmHg)	an,	PVRi (WU/m	CI (mL ₂) min/m ²			Systemic O2 Sat (%)	PVR:SVR
5 years I month	Sildenafil, oxyg	en	FiO ₂ 1.0, ii 20 ppm	NO	55/35/m	145	7	<i></i>	0.76	:1	60	0.92
5 years 8 month	s Sildenafil, bosei treprostinil,		2L NC ox	ygen	38/13/m	124	2.1-2.8	3.8	1.8:1	l 	81	0.2
6 years 3 month	•		Room air		26/11/m	117	2.2	3.3	1:1		96	0.16
Table 2. Card	Table 2. Cardiac catheterization data for Patient AT.											
~ 1	nstiic L Heart PAH-specific Tx	+PVD Condition		LAP mmHg	Qp L/min/m²	Qp left lung		PVRi left lung (WU/m²)	Qp right lung		PVRi right g lung (WU/m²)	PVRi total (WU/m²)
8 months –after atrial stent	None	Intubated Fi	O ₂ 0.50	15	3.58	2.18	54	17.86	1.40	40	17.91	8.94
10 months	Bosentan, treprostinil oxygen	Intubated Fi	O ₂ 0.21	12	4.00	2.44	35	9.43	1.56	23	7.05	4.03
	Bosentan,	Intubated Fi	O ₂ 0.21	12	2.51	1.53	32	13.06	0.98	19	7.15	4.62
	reprostinil oxygen	FiO ₂ 1.0, iN	IO 40 ppm	12	3.38	2.06	28	7.76	1.32	15	2.28	1.76
	Sildenafil, bosentan,	FiO ₂ 0.21		14	1.54		19			19		3.25
post Glenn	treprostinil oxygen	Post-coil collatera	ls, FiO ₂ 0.21	14	1.68		19			19		2.98

Other types of PAH-CHD

Segmental PH:
ToF Complex
Pulmonary Atresia


The Definition and Management of Segmental Pulmonary
Hypertension

Accepted JAHA 2018

Dimopoulos K MD MSc PhD FESC¹, Diller GP MD PhD FESC², Opotowsky AR MD, MPH, MMSc³, D'Alto M MD PhD FESC⁴, Gu H MD PhD ⁵, Giannakoulas G MD PhD⁶, Budts W MD PhD FESC⁷, Broberg CS MD⁸, Veldtman G FRCP, MBChB⁹, Swan L MBChB, FRCP, MD¹, M Beghetti MD FESC ¹⁰, Gatzoulis MA MD PhD FESC FACC¹

Example of segmental PH

Complex pulmonary atresia

- Complex pulmonary atresia
- Large PDA to upper LPA
- Small MAPCA to mid L lung
- MAPCA to R lung
- PH in left upper lung/R lung?
- How do you calculate PVR?
- PAH therapies?

The Definition and Management of Segmental Pulmonary Hypertension

Accepted JAHA 2018

<u>Dimopoulos</u> K MD MSc PhD FESC¹, Diller GP MD PhD FESC², <u>Opotowsky</u> AR MD, MPH, MMSc³, <u>D'Alto</u> M MD PhD FESC⁴, <u>Gu</u> H MD PhD ⁵, <u>Giannakoulas</u> G MD PhD⁶, <u>Budts</u> W MD PhD FESC⁷, <u>Broberg</u> CS MD⁸, <u>Veldtman</u> G FRCP, <u>MBChB</u>⁹, Swan L MBChB, FRCP, MD¹, M <u>Beghetti</u> MD FESC ¹⁰, <u>Gatzoulis</u> MA MD PhD FESC FACC¹

Clinical update

Pulmonary hypertension related to congenital heart disease: a call for action

Konstantinos Dimopoulos, Stephen John Wort, and Michael A. Gatzoulis*

- Action 1: identify patients with PAH-CHD lost to follow-up and those followed in non-specialist centres
- Action 2: screen all congenital heart disease patients thoroughly for the presence of pulmonary arterial hypertension
- Action 3: educate cardiologists and pulmonary hypertension physicians on the distinct features of Eisenmenger syndrome
- Action 4: standardize treatment, avoid pitfalls, and challenge old myths in Eisenmenger syndrome
- Action 5: do not close defects in Eisenmenger syndrome or other PAH-CHD with established pulmonary vascular disease: 'I can close it' does not mean 'I should close it'

Clinical update

Pulmonary hypertension related to congenital heart disease: a call for action

Konstantinos Dimopoulos, Stephen John Wort, and Michael A. Gatzoulis*

- Action 6: use PAH therapies to improve exercise capacity, quality of life, and prognosis in Eisenmenger syndrome
- Action 7: be inclusive of other types of PAH-CHD, beyond Eisenmenger syndrome
- Action 8: explore the concept of a 'permissive' trait genotype in patients with large ASDs who develop out-of-proportion pulmonary arterial hypertension and Eisenmenger syndrome
- Action 9: promote clinical research and collaboration between specialist centres on areas of controversy and lack of evidence
- Action 10: support care of pulmonary arterial hypertension related to congenital heart disease patients in the developing world

Imperial College London

Thank you!