«Πνευμονική υπέρταση- Απεικόνιση Ι» Μαγνητική τομογραφία καρδιάς-CMR in PAH. Do we need it?

2° ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ ΠΝΕΥΜΟΝΙΚΗΣ ΥΠΕΡΤΑΣΗΣ 15-17 ΙΟΥΝΙΟΥ 2018

Μπούτσικου Μαρία MD, PhD, MSc Καρδιολόγος, Νοσοκομείο Mediterraneo ACHD- and Pulmonary hypertension Unit/ MRI Unit, Royal Brompton Hospital, UK

2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the **European Respiratory Society (ERS)**

1. Pulmonary arterial hypertension (PAH)

- I.I Idiopathic
- 1.2 Heritable
 - I.2.I BMPR2 mutation
 - 1.2.2 Other mutations
- 1.3 Drugs and toxins induced
- 1.4 Associated with:
 - 1.4.1 Connective tissue disease
 - 1.4.2 HIV infection
 - 1.4.3 Portal hypertension
 - 1.4.4 Congenital heart disease (Table 6)
 - 1.4.5 Schistosomiasis

Pulmonary Arterial Hypertension Definition

mPAP >25 mmHg

PCWP, LAP, or LVEDP ≤15 mmHg

PVR >3 Wood Units

Table 12 Recommendations for diagnostic strategy

Recommendations	Classa	Level ^b	Ref. c
Echocardiography is recommended as a first-line non-invasive diagnostic investigation in case of suspicion of PH	ı	С	
Ventilation/perfusion or perfusion lung scan is recommended in patients with unexplained PH to exclude CTEPH	ı	С	47
Contrast CT angiography of the PA is recommended in the workup of patients with CTEPH	ı	C	93
Routine biochemistry, haematology, immunology, HIV testing and thyroid function tests are recommended in all patients with PAH to identify the specific associated condition	ı	U	
Abdominal ultrasound is recommended for the screening of portal hypertension	1	U	67
Lung function test with DLCO is recommended in the initial evaluation of patients with PH	ı	С	36
High-resolution CT should be considered in all patients with PH	lla	U	94
Pulmonary angiography should be considered in the workup of patients with CTEPH	lla	U	
Open or thoracoscopic lung biopsy is not recommended in patients with PAH	Ш	С	

CT = computed tomography; CTEPH = chronic thromboembolic pulmonary hypertension; DLCO = diffusing capacity of the lung for carbon monoxide; PAH = pulmonary arterial hypertension; PH = pulmonary hypertension.

Diagnosis and assessment of PH

1.Suspicion

Non specific symptoms

Dyspnea, fatigue, syncope & chest pain

2.Detection

Clinical Examination

Accentuated pulmonic component of second heart sound (90%)

Right ventricular S3 or S4 Tricuspid regurgitant murmur

ECG

Right axis deviation, S1Q3 pattern Lacks sensitivity & specificity as screening tool

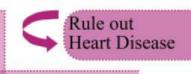
Chest X Ray

Dilated main & hilar pulmonary artery Filling in of retrosternal airspace due to RV dilatation

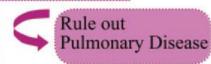
Transthoracic Echocardiography

Screening test of choice to detect PH

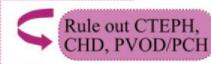
3. Classification


To define the etiology of PH according to Dana Point Clinical Classification and rule out surgically treatable causes of PH

4.Evaluation


Confirm the diagnosis of PH Hemodynamic evaluation Assessment of functional capacity at baseline Symptoms/ Screening/ Incidental Findings

Physical Exam ECG Chest X Ray


Transthoracic/Transesophageal Echocardiogram

Pulmonary Function Tests

V/Q; MDCTPA

RHC; cMRI

Rule out PAH

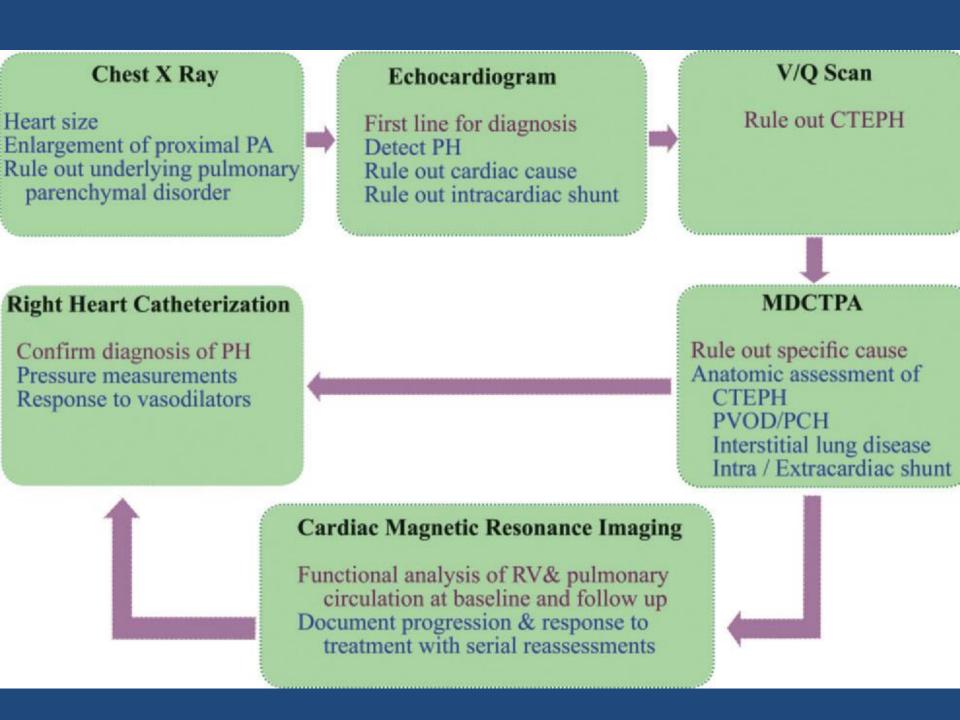


Table 13 Risk assessment in pulmonary arterial hypertension

Determinants of prognosis ^a (estimated 1-year mortality)	Low risk <5%	Intermediate risk 5–10%	High risk >10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	I, II	III	IV
6MWD	>440 m	165 -44 0 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ > 15 ml/min/kg (>65% pred.) VE/VCO ₂ slope <36	Peak VO ₂ 11–15 ml/min/kg (35–65% pred.) VE/VCO ₂ slope 36–44.9	Peak VO2 < 11 ml/min/kg (<35% pred.) VE/VCO2 slope ≥45
NT-proBNP plasma levels	BNP <50 ng/l NT-proRNP <300 ng/l	BNP 50-300 ng/l NT-proBNP 300-1400 ng/l	BNP >300 ng/l NT-proBNP >1400 ng/l
Imaging (echocardiography, CMR imaging)	RA area <18 cm² No pericardial effusion	RA area 18–26 cm² No or minimal, pericardial effusion	RA area >26 cm² Pericardial effusion
Haemodynamics	RAP <8 mmHg CI ≥2.5 l/min/m² SvO₂ >65%	RAP 8–14 mmHg CI 2.0–2.4 l/min/m² SvO₂ 60–65%	RAP > 1.4 mmHg CI < 2.0 l/min/m ² SvO ₂ < 60%

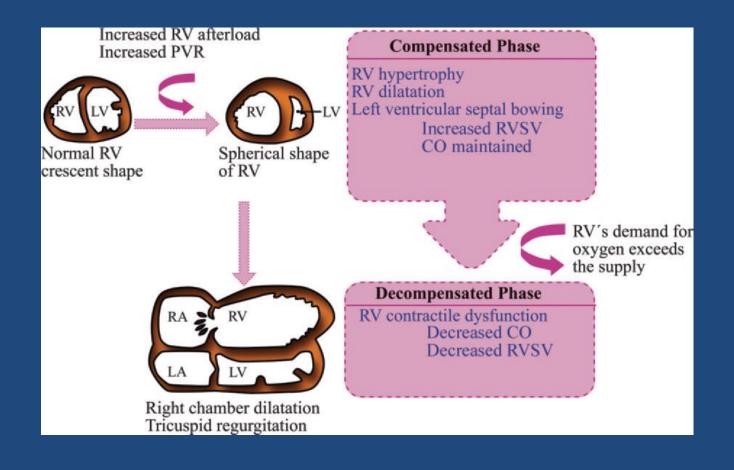
6MWD = 6-minute walking distance; BNP = brain natriuretic peptide; CI = cardiac index; CMR = cardiac magnetic resonance; NT-proBNP = N-terminal pro-brain natriuretic peptide; pred. = predicted; RA = right atrium; RAP = right atrial pressure; $SvO_2 = mixed$ venous oxygen saturation; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = oxygen$ consumption; $VE/VCO_2 = ventilatory$ equivalents for carbon dioxide; $VO_2 = ventilatory$ equivalents for carbon dioxide;

^aMost of the proposed variables and cut-off values are based on expert opinion. They may provide prognostic information and may be used to guide therapeutic decisions, but application to individual patients must be done carefully. One must also note that most of these variables have been validated mostly for IPAH and the cut-off levels used above may not necessarily apply to other forms of PAH. Furthermore, the use of approved therapies and their influence on the variables should be considered in the evaluation of the risk. ^bOccasional syncope during brisk or heavy exercise, or occasional orthostatic syncope in an otherwise stable patient.

^cRepeated episodes of syncope, even with little or regular physical activity.

Role of CMR in PH guidelines

European Heart Journal (2016) 37, 67-119 doi:10.1093/eurhearti/ehv317 **ESC/ERS GUIDELINES**



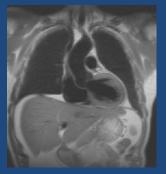
2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)

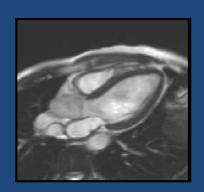
- Accurate and reproducible in the assessment of RV size, morphology and function
- Non-invasive assessment of blood flow, SV, CO, pulmonary arterial dispensibility, RV mass
- LGE
- Diagnosis of CHD
- MRA for the diagnosis of CTEPH
- Prognostic information in pts PAH at baseline and follow up
- Identifying RV failure prior to the development of clinical features

Structural RA/RV changes in PAH

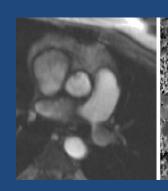
Cardiac MRI in PH


Is it more than just nice images?

CMR is Versatile


"able to be adapted to many different functions"

Different sequences/techniques for different clinical questions



Anatomical images

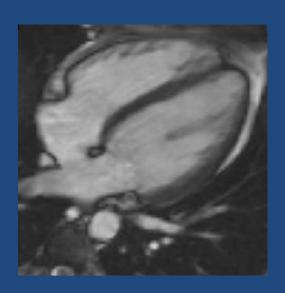
Function-cine



Flow mapping

Contrast angiography

- What are the sequences showing
- What can I expect as a clinician



Late gadolinium

MR - Tissue characterisation

CMR: Excellent tissue characterisation

→ differentiation of blood-myocardium

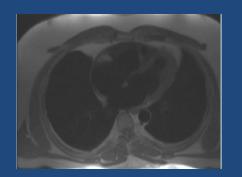
Confirming the diagnosis- providing prognostic information

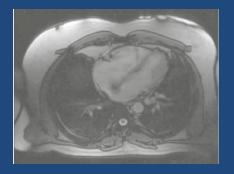
- Patient referrals
 - with established diagnosis
 - Requiring clarification
 - With unknown aetiology
 - With other indication for MRI scan (left heart disease/ARVC?)

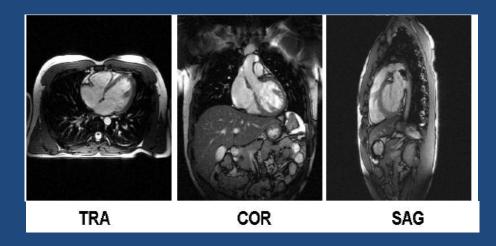
Table 2 Right Heart Changes in Pulmonary Hypertension RV hypertrophy involving the papillary muscles, trabeculations and interventricular septum [72]. Asymmetric septal hypertrophy may be present [73-75] Progressive RV dilatation until it becomes the dominant, apex-forming ventricle Abnormal interventricular septal motion Tricuspid regurgitation as a consequence of RV dilatation and stretching of the valve annulus Interatrial septum becomes convex leftwards reflecting elevated RA pressures Dilated RA Plethoric vena cavae Pericardial effusion

Essential CMR Protocol in PHT

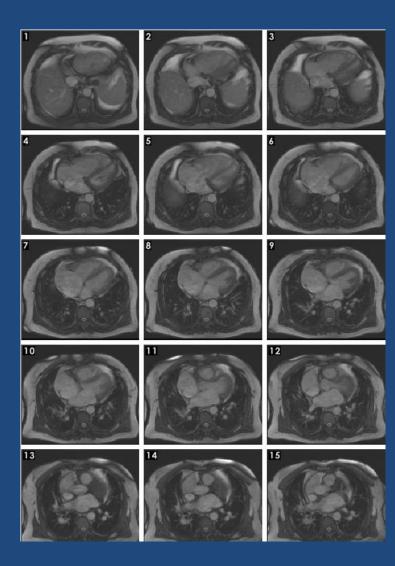
- 1-Anatomical images
- 2-Cine images
- 3-Flow studies
- 4-MR angiography

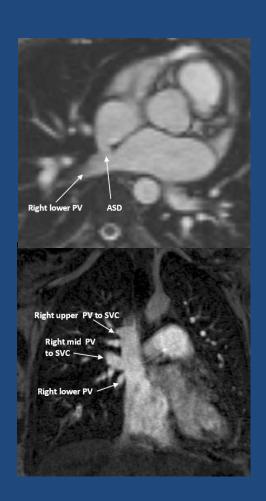

- Late gadolinium
- STIR-T2
- 3D noncontrast volumetric acquisition


research


- Tagging, feature tracking
- 4D flow
- Myocardial DTI
- 3D Late gadolinium
- Perfusion
- RV T1 mapping

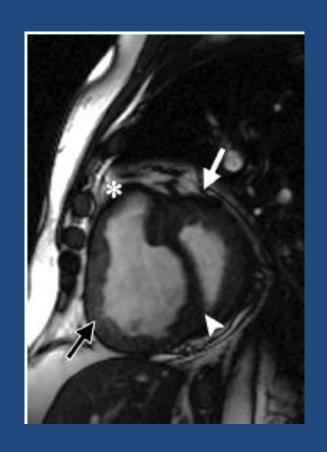
Static anatomical images


Black blood and white blood


Cine Images

- Assessment of RV and LV
 Volumetric analysis with no geometric assumptions
- Pulmonary arteries
- Shunts, ASD

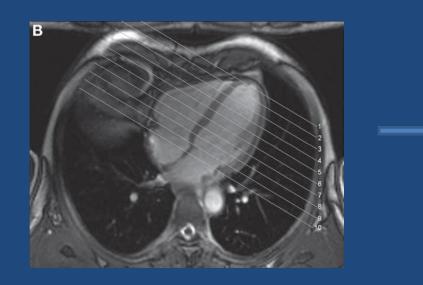
CMR - Large field of view and unlimited image planes

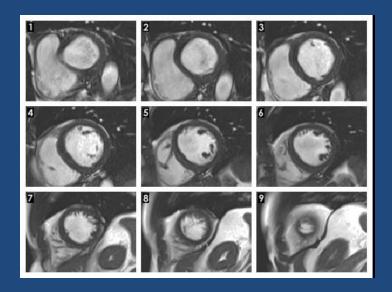

Large FoVHeart + thorax + vessels

Unlimited image planes

CMR in PAH- Functional evaluation

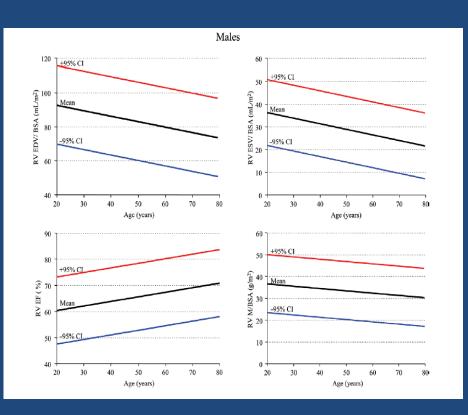
- Assessment of
 - ventricular volumes
 - RA/RV Morphologic characteristics (RV shape and dilatation, RVH, RA enlargement, flattening of the IVS, TR)
 - RV mass and function
 - Pulmonary arteries (size and pulsalitility)

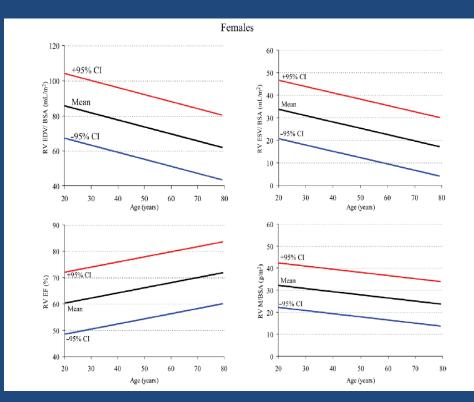


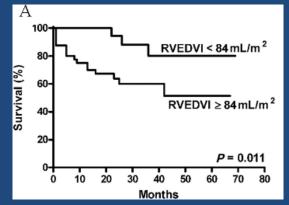

RV -cine

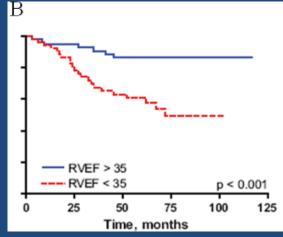
- Reproducible
 assessment of RV
 volume, function
 and mass
- Assessment of RWMA
- Increased RVEDV and RVESV, decreased RVSV and RVCO, decreased RVEF

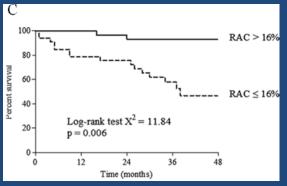
Treatment failure/mortality


Ventricular Volumetric analysis



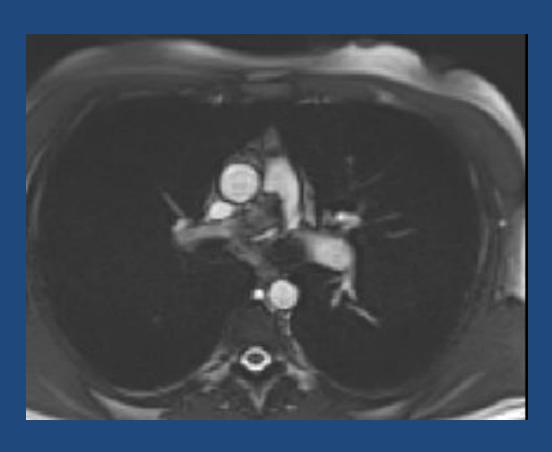



	EDV (mL)	ESV (mL)	SV (mL)	EF (%)	Mass index (g/m²)
LV	167	54	113	67	121
RV	144	38	106	73	18


RV Volumes and function; normal ranges (95% CI) indexed for BSA

PAH – prognosis CMR

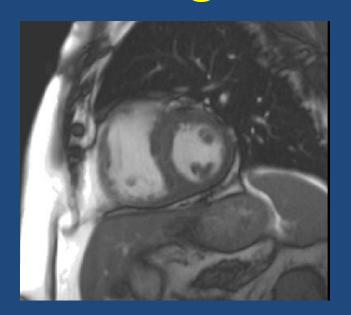
Changes in Right Ventricular Function Measured by Cardiac Magnetic Resonance Imaging in Patients Receiving Pulmonary Arterial Hypertension—Targeted Therapy The EURO-MR Study

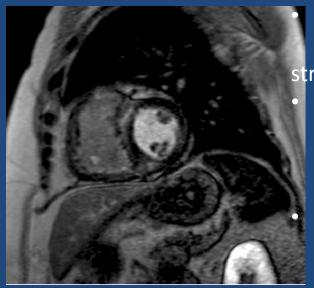

Right ventricular function has been shown to play a key role in the survival of patients with pulmonary arterial hypertension (PAH). However, little information is available about the impact that PAH-specific therapy has on right ventricular function. Although cardiac MRI provides a comprehensive picture of right ventricular structure and function, its use in clinical practice is limited, which may result, at least in part, from the lack of published data on patients with PAH. The multicentre pan-European study described here is the most comprehensive to date, investigating the use of cardiac MRI during treatment of patients with PH. It demonstrates that cardiac MRI variables (stroke volume index, cardiac index, and ejection fraction) are significantly associated with response to PAH-specific therapy. The study describes the detailed assessments required at baseline and during follow-up in this cohort of patients. We think that these data should be considered when designing future trials of PAH-specific therapy so that cardiac MRI variables are included as a marker of therapeutic response.

Peacock et al (Circ Cardiovasc Imaging. 2014;7:107-114.)

Cine - pulmonary arteries

Cines main and branch PAs


expansibility

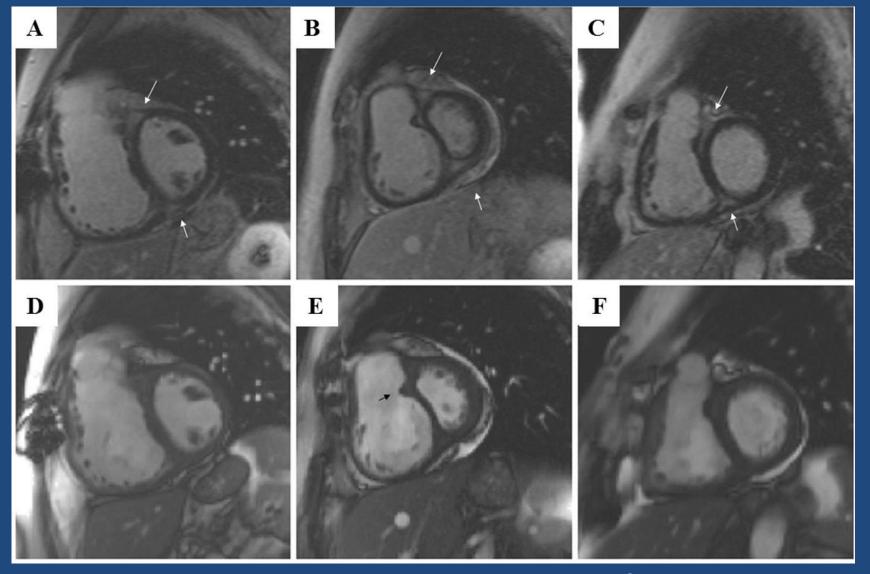


Late gadolinium enhancement



 indicative of increased mechanical stress in these areas;

Elevated RVSP -> tissue abnormalities (fibrosis, myocardial disarray, and inflammation). systolic pulmonary pressure is the only tool that may help


Ventricular insertion point LGE predict LGE

Bradlow et al., *Circulation CV 2010* Am J Cardiol 2007;100(4):731-735.

LGE in PH

Bradlow et al. Journal of Cardiovascular
Magnetic Resonance 2012, 14:6

Contrast MR angiography

3D SSFP angiography

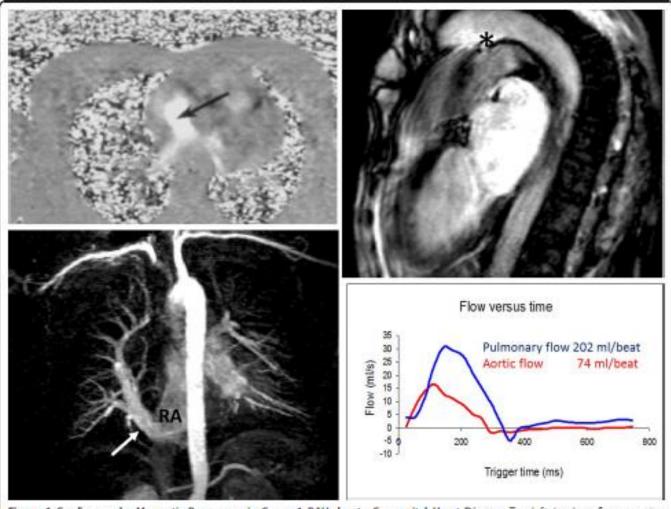
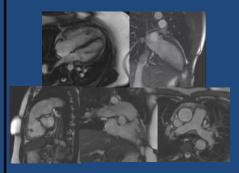
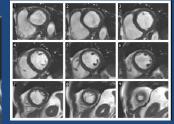
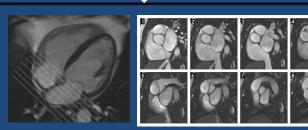



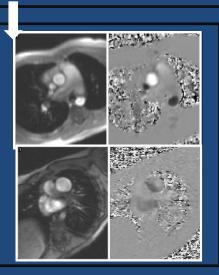

Figure 1 Cardiovascular Magnetic Resonance in Group 1 PAH due to Congenital Heart Disease. Top left, in plane flow mapping demonstrating flow between left and right atrium (arrow) through an atrial septal defect, Top right, a steady state free procession cine showing flow (asterisk) from descending acrts to pulmonary artery via a persistent ductus arteriosus; Bottom left, Magnetic Resonance Angiography of an aberrant pulmonary vein (arrow) draining into the right atrium (RA); Bottom right, flow mapping in this patient in the main pulmonary artery and acrts allowed a QpQs of 27 to be derived.

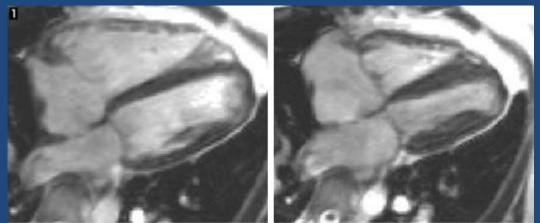

PAH -essential CMR

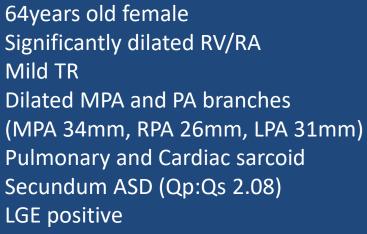
Ventricular Long axis cines PA cines, transaxial cines

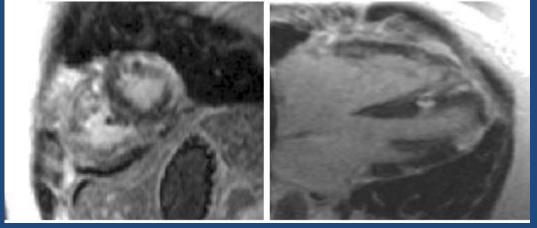


SAX cines, Ventricular Vols and EF




- Confirmation of diagnosis
- Exclusion of shunts
- Prognostic markers

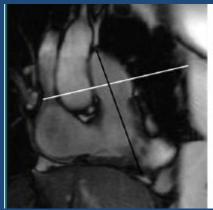


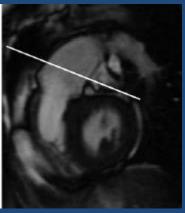

Atrial SAX rule out ASD

Cardiac output:
PA flow
Ao flow
Qp/Qs

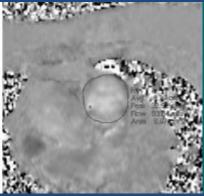
	EDV (mL)	ESV (mL)	SV (mL)	EF (%)	Mass index (g/m²)
LV	137	62	75	55	71
RV	265 (58-154)	108 (12-68)	158 (35-98)	59 (47-80)	

Research


INSIGHT	CMR METHOD	REF#
Early Changes		
PA stiffens before pulmonary artery pressure increase at rest	Distensibility of pulmonary arteries	[42]
Ventricular Remodeling and Dysfunction		
LV mass is lower in patients with chronic thromboembolic disease but normalizes post-pulmonary endarterectomy	LV mass	[62]
Interventricular dyssnchrony and septal bowing in PAH is due to slower contraction for the RV than LV	Tagging	[63]
Cardiac Ischemia		


Adenosine Stress Perfusion

[64]


Both ventricles display attenuated vasoreactivity proportional to mPAP

Pulmonary Arterial Hypertension: Noninvasive Detection with Phase-Contrast MR Imaging¹

Radiology

Patient Subgroups according to Presence or A	usclice of PAN and Underlying Gause
Subgroup*	No. of Patients
Group 1—PAH and collagen-vascular disease	13
Scleroderma	8
Lupus erythematosus	4
Rheumatoid arthritis	1
Group 2—PAH and human immunodeficiency virus or	
portopulmonary syndrome	16
Human immunodeficiency virus	13 (five with advanced liver disease
Portopulmonary syndrome	3
Group 3—idiopathic PAH	13
Group 4—normal pulmonary pressures†	17
Total	59

^{*} Categories are based on the revised Clinical Classification of Pulmonary Hypertension (1).

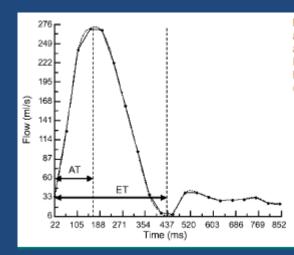
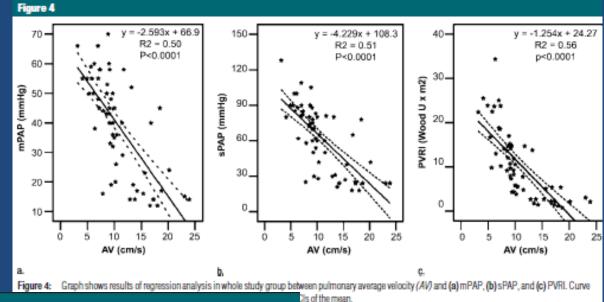
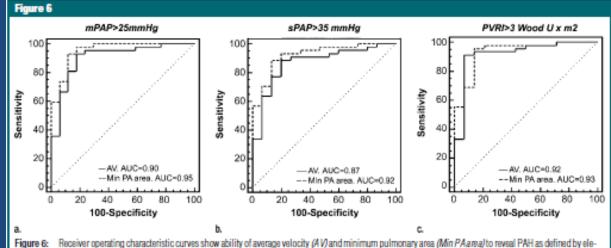
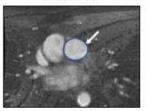




Figure 3: Flow curve of PA. AT and ET as quantified in our study are shown. Left dotted vertical line = time of peak systolic flow. Right dotted vertical line = time of end of ejection.

[†] Reasons for evaluation in Group 4 included collagen-vascular disease (n = 4), human immunodeficiency virus infection (n = 1), corrected cardiac shunt (n = 1), end-stage liver disease (n = 2), use of anorexigens (n = 2), left-sided heart disease (n = 2), alveolar hypoventilation (n = 2), chronic thromboembolic disease (n = 1), and symptoms of unexplained origin (shortness of breath or ascribes) (n = 2).

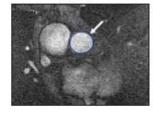
Radiology

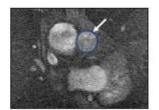


Pulmonary artery stiffness

Pulsatility Index

Normal


Systole

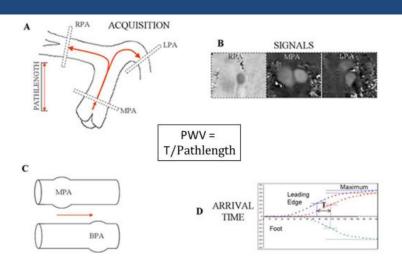
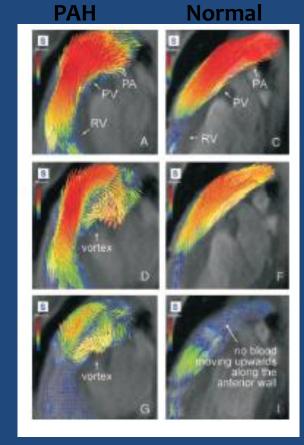


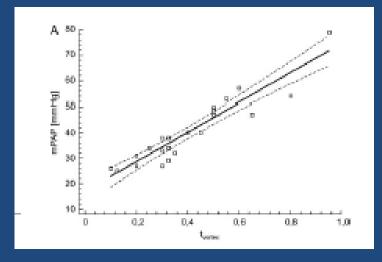
Diastole

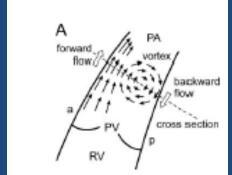
PA_{Systole} 8.19 cm² PA_{Diastole} 5.51 cm² Pulsatility 49%

PAH

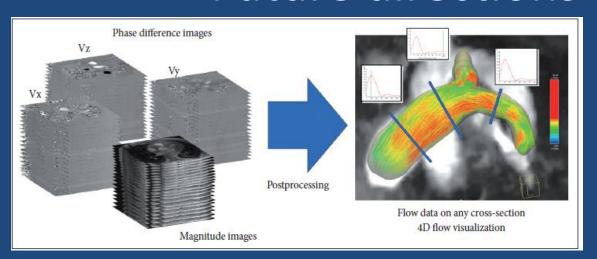
PA_{Systole} 8.91 cm² PA_{Okatole} 8.10 cm² Pulsatility 10%

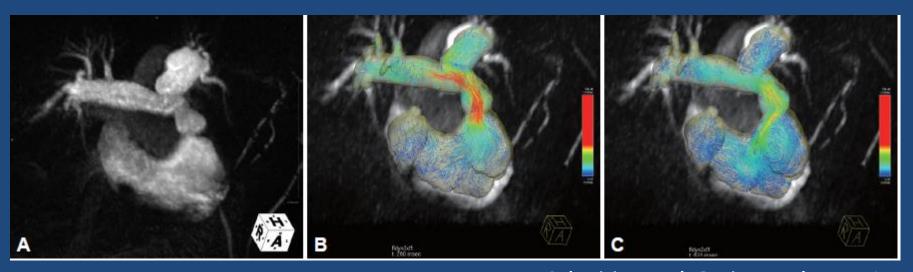




Figure 6 Measuring Transit-Time PWV in the Pulmonary Arteries. Data is acquired in main pulmonary artery, left and right pulmonary artery (A) and the path length between them measured accurately. Using CMR phase-contrast velocity maps (B), the flow pulse is tracked (C) and differences (T) in arrival time (D, in this healthy case defined as halfway between the foot and maximum values) are determined. PWV is then calculated as T/Pathlength. MPA; main pulmonary artery, RPA; right pulmonary artery, LPA; left pulmonary artery, BPA; branch pulmonary artery, PWV; Pulse wave velocity.


Bradlow et al. Journal of Cardiovascular Magnetic Resonance 2012, 14:6

4D flow mapping


Pulmonary artery flow profiles



Future directions-4Dflow

- Characteristics of PH
- vortex flow formation
- wall shear stress
- correlation with mPAP

Odagiri K et al. Springer plus 2016;5:1071 Hideki et al, CVIA 2018;2(2): 85-96

Pros and cons of CMR

- Gold standard for RV ventricular size, function and mass
- Superior image quality (no limitations to acoustic windows and body habitus)
- Ver y low inter-observer variability
- Anatomic and functional assessment of PAs (size, pulsalility)
- Tissue characterization
- No radiation

- Long scanning time
- Claustrophobia
- Motion and arrhythmia artefacts
- Breath holding
- Cost
- Nephrogenic systemic fibrosis in patients with severely impaired renal function
- Ferromagnetic materials and devices

Key messages

- Multimodality imaging is essential for diagnosis and management of patients with PH
- CMR is gold standard for assessment of RV size, function and mass
- CMR provides important information for diagnosis, classification and follow up of patients with PAH

Thank you very much