Connecting acute pulmonary embolism with CTEPH Implications for the follow-up strategy after PE

Stavros V. Konstantinides, MD, PhD, FESC, FRCP(Glasg)

Professor, Clinical Trials, and Medical Director Center for Thrombosis und Hemostasis, University Medical Center Mainz, Germany stavros.konstantinides@unimedizin-mainz.de

Professor of Cardiology

Democritus University of Thrace, Greece

skonst@med.duth.gr

Disclosures

Lecture honoraria: Bayer HealthCare, Boehringer Ingelheim, MSD, Pfizer – Bristol-Myers Squibb, Servier

Consultancy honoraria: Bayer HealthCare, Boehringer Ingelheim, Actelion, Pfizer – Bristol-Myers Squibb

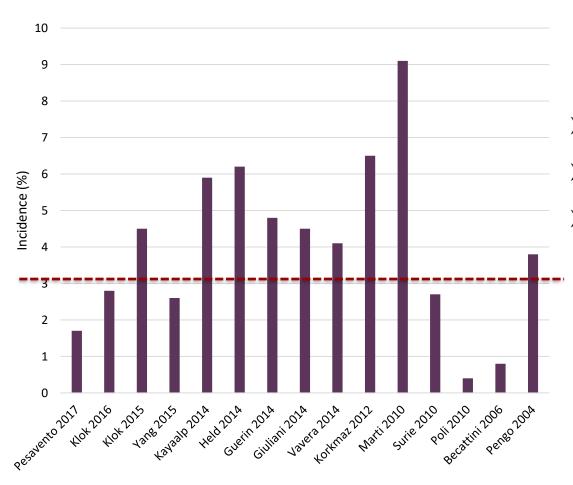
Institutional research support: Bayer HealthCare, Boehringer Ingelheim, Daiichi-Sankyo, MSD, Pfizer, Actelion


Connecting (?) acute PE to CTEPH

Is CTEPH really a long-term complication/sequela of acute PE?
Or is it a different disease?

Is CTEPH a complication of PE?

As many as 75% of patients with CTEPH report a history of previous symptomatic DVT or PE (data from 679 patients)


Inclusion of 687 patients (433 CTEPH, 254 non-thrombotic PH) at four European referral centers for CTEPH/PH between 1996 and 2007

Risk factor	Adjusted Odds ratio	95% CI, <i>p</i> value
Previous VTE	4.5	2.4–9.1; <i>p</i> <0.001
Recurrent VTE	14.5	5.4–43.1; <i>p</i> <0.001
Thyroid hormone replacement		2.7–15.1; <i>p</i> <0.001
Antiphospholipid syndrome		1.6–12.2; <i>p</i> =0.004
Splenectomy		1.6–2438.1; <i>p</i> =0.017

CI, confidence intervals. Bonderman D et al. Eur Respir J 2009;33:325–31.

How frequent is CTEPH after acute PE?

- large heterogeneity of published studies
- incidence ranges from 0.4 to 9.1%
- a meta-analysis reported an incidence of **3.2%** in <u>survivors</u> of pulmonary embolism

Not related to frequency of residual perfusion defects

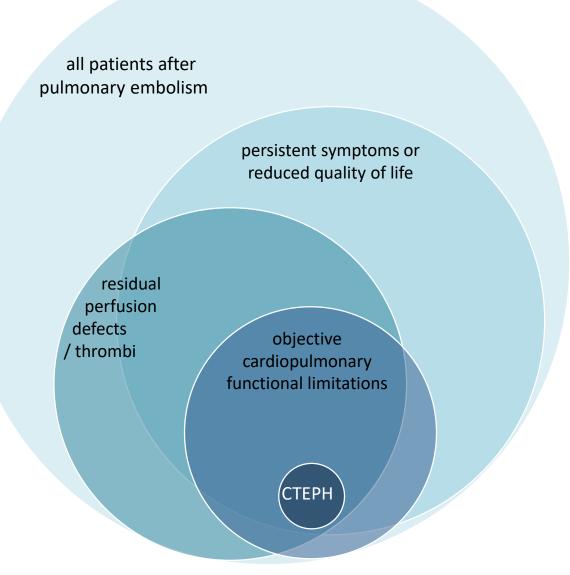
Study	Patients	Follow-up	Imaging technique	Perfusion defects
Pesavento 2017	647	6 months	V/Q-scan	50%
Meysman 2017	46	6 months	Q-SPECT	52%
den Exter 2015	157	6 months	MDCT	16%
Pesavento 2014	113	6 months	MDCT	15%
Poli 2013	235	median 11 months	Q-scan	26%
Alonso-Martinez 2012	120	mean 5 months	MDCT	26%
Cosmi 2011	173	mean 9 months	MDCT / Q-scan	15% MDCT 28% Q scan
Sanchez 2010	254	median 12 months	V/Q scan	29%

Findings at baseline (index PE event)	Conditions other than index PE	
Echo: Elevated sPAP, >60 mmHg	Myeloproliferative disorders	
Echo/CT: RV pressure overload	History of malignancy	
CT: Central thrombi	Splenectomy	
CT: signs of pre-existing CTEPH*	Inflammatory bowel disease	
	Chronic osteomyelitis	
	Antiphospholipid syndrome	
	Hypothyroidism	
	Ventriculo-atrial shunts	
	Chronic central venous lines	
	Pacemakers	

Pepke-Zaba J, Delcroix M, Lang I, et al. *Circulation*. 2011;124(18):1973-81.

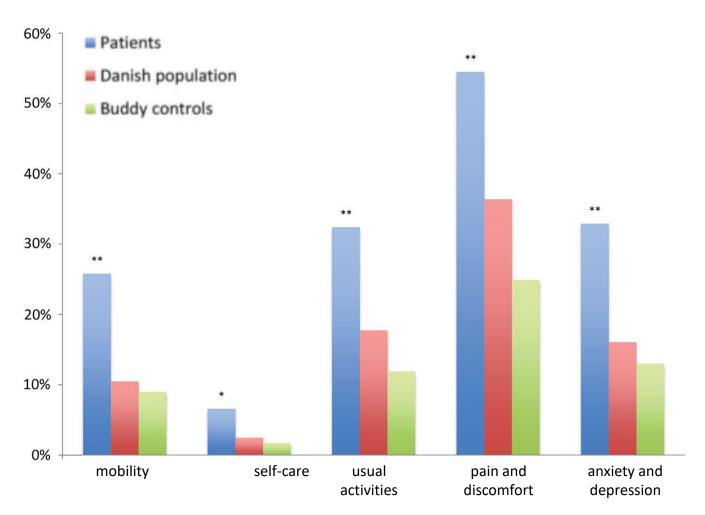
Bonderman D, Wilkens H, Wakounig S, et al. *Eur Respir J* 2009;33(2):325-31.

Lang IM, Simonneau G, Pepke-Zaba JW, et al. *Thromb Haemost* 2013;110(1):83-91.


Connecting (?) acute PE to CTEPH

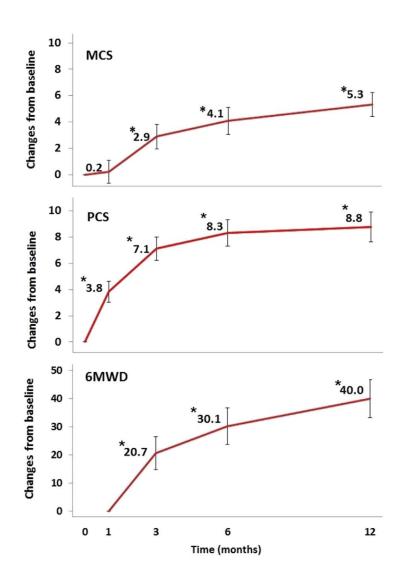
Which are the patients' most frequent problems after PE?

Persisting symptoms and functional limitation



- > 50 % of patients report persistent symptoms or reduced quality of life
- ➤ 10-30 % of patients have cardiopulmonary functional limitation
- 25-33 % of patients have residual perfusion defects / persistent thrombi
- > 0.4 to 9.1 % of patients develop CTEPH

Quality of life after pulmonary embolism


- Patients who survived PE have a reduced health-related quality of life.
 - Tavoly M et al., BMJ Open 2016; 6:e013086, van Es J et al., Thromb Res 2013; 132:500-505
- Disease-specific quality of life can be assessed using the *Pulmonary Embolism Quality of Life* (PEmb-QoL) questionnaire.
 - Cohn DM et al., J Thromb Haemost 2009; 7:1044-1046
- Quality of life is impaired by a reduced functional capacity and persistent dyspnoea

Tavoly M et al., BMJ Open 2016; 6:e013086

Functional limitation after pulmonary embolism

ELOPE cohort study: 100 patients followed 1, 3, 6 and 12 months after pulmonary embolism at 5 Canadian hospitals 2010-2013

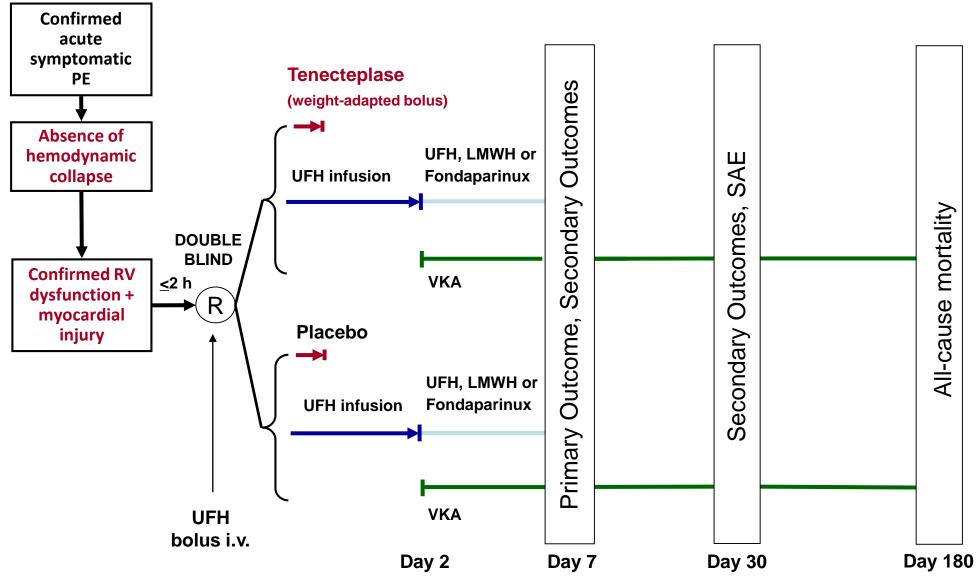
- Quality of life, dyspnoea and walking distance improved during the first year after pulmonary embolism Kahn SR et al., Am J Med 2017; 130:e9-990.e21
- 47% of patients hat a V_{O2} peak <80% on CPET after 1 year Kahn SR et al., Chest 2017; 151:1058-1068

Meta-analysis including 26 studies (3,671 patients) with 18-month follow-up

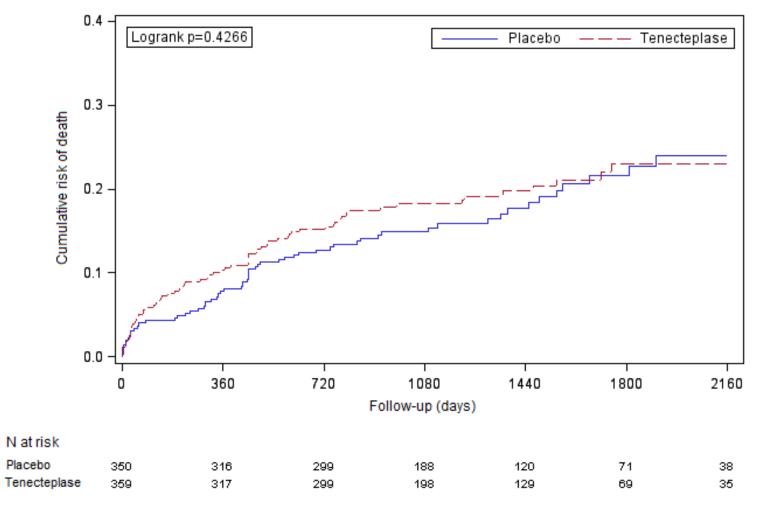
- Functional limitations after pulmonary embolism are common: 18 % had RV dysfunction and 11% NYHA III/IV
- Effects of treatment (e.g. thrombolysis, duration of anticoagulation) unclear

Sista AK et al., Vasc Med 2017; 22:37-43

The PE perspective



Patient follow-up after acute PE: What did we learn from the PEITHO trial?


Reperfusion for intermediate-high risk? PEITHO

PEITHO long-term FU (37.8 months [24.6.-54.8]): probability of survival

CTH

PEITHO long-term FU: clinical & functional status (41.6 \pm 15.7 months)

	Tenecteplase (n=175)	Placebo (n=183)	P value
Persisting clinical symptoms	63 (36.0%)	55 (30.1%)	0.23
of them, exertional dyspnea	55	50	
exertional chest pain	4	0	

The PEITHO Investigators. J Am Coll Cardiol 2017;69:1536-1544

	Tenecteplase (N = 144)	Placebo (N = 146)	P Value
RVEDD > 30 mm Missing data	3 4 (23.6%) 12 (8.3)	22 (15.1%) 11 (7.5)	0.058
RV/LV diameter ratio > 0.9 Missing data	12 (8.3%) 5 (3.5)	13 (8.9%) 7 (4.8)	0.834
TAPSE Reduced – no. (%) Median (interquartile range) – mmHg Missing data – no. (%)	14 (9.7%) 24.0 (20.0-27.0) 19 (13.2)	7 (4.8%) 24.0 (21.0-26.0) 18 (12.3)	0.107 0.551
TR jet velocity > 2.6 m/s Missing data	22 (15.3%) 11 (7.6)	27 (18.5%) 14 (9.6)	0.412
Systolic PAP – mmHg Median (interquartile range) Missing data – no. (%)	30.0 (24.0-35.0) 33 (22.9)	30.0 (25.0-35.0) 39 (26.7)	0.527

The PEITHO Investigators. J Am Coll Cardiol 2017;69:1536-1544

PEITHO long-term FU: CTEPH

	Tenecteplase (n=190)	Placebo (n=186)	P value
CTEPH confirmed	4 (2.1%)	6 (3.2%)	0.79

The PEITHO Investigators. J Am Coll Cardiol 2017;69:1536-1544

The PE perspective

What further data can we expect in the future? What can we recommend today?

Structured follow-up after acute PE: Ongoing multicenter prospective cohort study

Study objectives	To determine, over a 2-year follow-up period, the incidence of CTEPH or post-PE impairment after an index episode of acute PE	
Co-primary outcomes	 Confirmed diagnosis of CTEPH at any time during 2 year-follow-up 'Post-PE impairment' at ≥1 FU visit: deterioration (compared with the previous visit or findings at discharge) by at least one category in ≥1 of 'a' (echocardiographic) parameters plus deterioration in ≥1 of 'b' (clinical, functional or laboratory) parameters 	
Number of patients/sites	1000/15	
Estimated FPI/LPO	June 2014 – end 2018	

Structured follow-up after acute PE: Ongoing multicenter prospective cohort study

Echocardiographic parameters of *post-PE impairment* between 2 visits (≥1 present):

Para	meter	Classification
a1	RV basal diameter	≤4.2 cm <i>vs</i> >4.2 cm
a2	Right atrial (RA) end-systolic area	≤18 cm ² vs >18 cm ²
a3	TAPSE	≤1.5 cm <i>vs</i> >1.5 cm
a4	Eccentricity index of the left ventricle	≤1.0 <i>vs</i> >1.0
a5	Estimated RA pressure	Normal vs intermediate vs high (based on inferior vena cava diameter and collapse with sniff)
a6	Tricuspid regurgitant (TR) velocity	<2.8 m/s vs 2.9–3.4 m/s vs >3.4 m/s
a7	Pericardial effusion	No <i>vs</i> yes

Structured follow-up after acute PE: Ongoing multicenter prospective cohort study

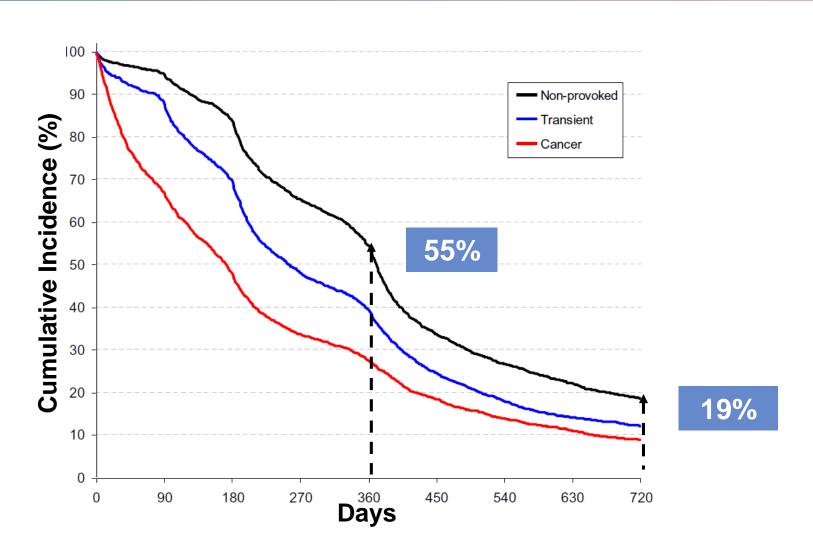
Clinical, functional and laboratory parameters of post-PE impairment between 2 visits (≥1 present):

Parar	neter	Classification
b1	Clinical evidence of RV failure	No vs yes
b2	Rate of progression of symptoms	Slow (or none) vs rapid
b3	Syncope	No vs yes
b4	WHO functional class	I or II vs III or IV
b5	Cardiopulmonary exercise testing	Normal vs moderate vs severe impairment based on peak O ₂ uptake and systolic BP
b6	Six-minute walking distance	>500 m <i>vs</i> 300–500 m <i>vs</i> <300 m
b7	BNP or NT-proBNP plasma levels	Normal or near-normal vs moderately elevated vs high

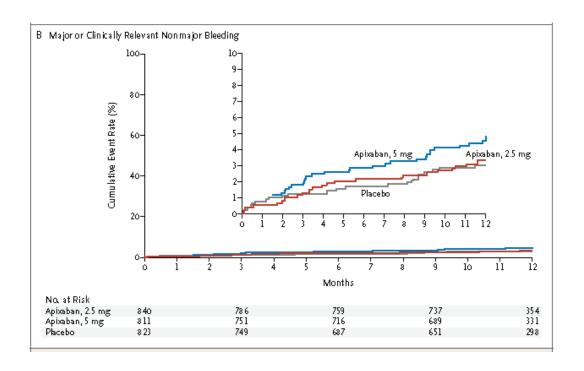
Selecting candidates for regular FU, CTEPH workup: Where do we stand today?

Recommendations	Class	Level
In PE survivors with persistent dyspnea, diagnostic evaluation for CTEPH should be considered	lla	С
Screening for CTEPH in asymptomatic survivors of PE is currently not recommended	Ш	С

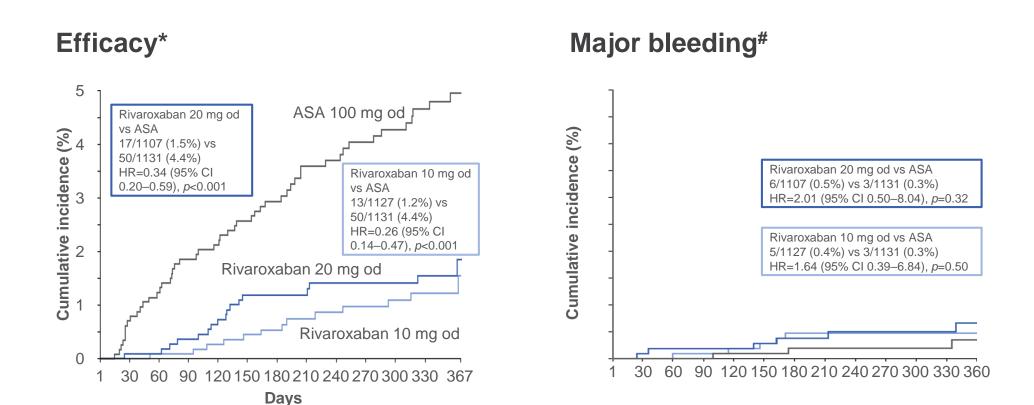
Eur Heart J 2014:35:3145-3146


No screening for CTEPH means no follow-up?

Duration of anticoagulation after VTE in real world RIETE Registry (N=6944)



Extended prophylaxis with half-dose NOAC: AMPLIFY-EXT



- Two doses of apixaban (2.5 mg and 5 mg, twice daily) versus placebo
- Pts with VTE who had completed
 6-12 months of anticoagulation
- study drugs were given for 12 months
- 2482 pts included in ITT
- Primary EP: 8.8% in placebo vs.
 1.7% in EACH apixaban dose

Major / CRNM bleeding: 2.7% vs. 3.2% (2.5 mg) vs. 4.3% (5 mg)

Extended prophylaxis with half-dose NOAC: EINSTEIN Choice

CTH

^{*}Intention-to-treat analysis; #safety analysis; ‡no events after Day 360 up to Day 480

Challenge: in whom to continue and with which dose?

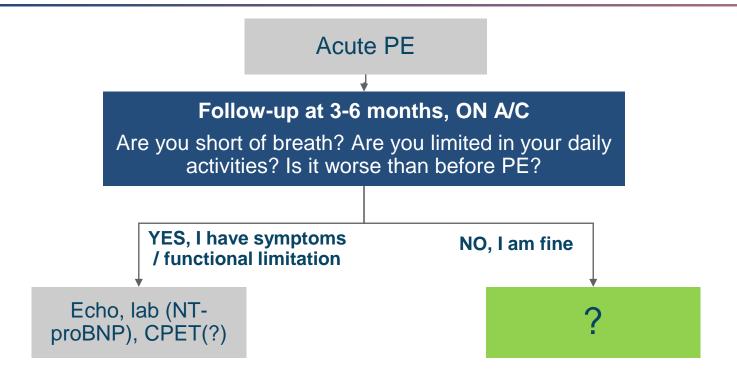
Early recurrence¹

- Poor quality of anticoagulation (failure to achieve therapeutic aPTT and INR)
- Cancer

Late recurrence^{2,3}

Strong established factors

- Unprovoked (vs provoked)
 VTE
- More than one VTE event
- On-going hormonal therapy
- Elevated D-dimer levels after/during VKA treatment


Weaker/controversial factors

- Male sex
- Location: PE/proximal DVT vs distal DVT
- Age
- Family history of VTE
- Obesity (increased BMI)
- C:
 - Cancer
 - Antiphospholipid syndrome
 - Hereditary thrombophilia

How could a 'post-PE' algorithm look like?

Probability of pulmonary hypertension on echo

Peak tricuspid regurgitation velocity (m/s)	Presence of other echo 'PH signs'a	Echocardiographic probability of pulmonary hypertension	
≤2.8 or not measurable	No	Low	
≤2.8 or not measurable	Yes	Intermediate	
2.9–3.4	No	_	
2.9–3.4	Yes	11:4	
>3.4	Not required	High	

A: The ventricles ^a	B: Pulmonary artery ^a	C: Inferior vena cava and right atrium ^a
Right ventricle/ left ventricle basal diameter ratio >1.0	Right ventricular outflow Doppler acceleration time <105 msec and/or midsystolic notching	Inferior cava diameter >21 mm with decreased inspiratory collapse (<50 % with a sniff or <20 % with quiet inspiration)
Flattening of the interventricular septum (left ventricular eccentricity index > 1.1 in systole and/or diastole)	Early diastolic pulmonary regurgitation velocity >2.2 m/sec	Right atrial area (end-systole) >18 cm ²
	PA diameter >25 mm.	

Check for 'CTEPH risk factors' at FU!

Findings at baseline (index PE event)	Conditions other than index PE	
Echo: Elevated sPAP, >60 mmHg	Myeloproliferative disorders	
Echo/CT: RV pressure overload	History of malignancy	
CT: Central thrombi	Splenectomy	
CT: signs of pre-existing CTEPH*	Inflammatory bowel disease	
	Chronic osteomyelitis	
	Antiphospholipid syndrome	
	Hypothyroidism	
	Ventriculo-atrial shunts	
	Chronic central venous lines	
	Pacemakers	

Pepke-Zaba J, Delcroix M, Lang I, et al. *Circulation*. 2011;124(18):1973-81.

Bonderman D, Wilkens H, Wakounig S, et al. *Eur Respir J* 2009;33(2):325-31.

Lang IM, Simonneau G, Pepke-Zaba JW, et al. *Thromb Haemost* 2013;110(1):83-91.

Acute PE --> 'post-PE syndrome' --> CTEPH: Where do we stand in 2018?

- Early reperfusion affects NEITHER late mortality NOR persistent symptoms in survivors of acute PE; these are determined by underlying disease/comorbidity.
- Large prospective cohort studies with systematic FU programs may help determine which baseline or FU parameters may be *predictors or prodromi* of CTEPH/CTED, and help to select patients for CTEPH screening in the future.
- For the time being, the aim of post-PE follow-up programmes should be to exclude, with simple tests, the <u>small</u> probability of CTEPH within the <u>large</u> group of patients with persisting symptoms, mostly due to **deconditioning or** comorbidity.
- In selected cases, CTEPH screening might also be performed in patients who deny symptoms but have **predisposing** factors.