

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Α΄ Καρδιολογική Κλινική ΑΧΕΠΑ Ιατρείο Πνευμονικής Υπέρτασης

Χρήστος Ν. Φελουκίδης

Ά Καρδιολογική Κλινική Α.Π.Θ.

3ο Πανελλήνιο Συνέδριο Πνευμονικής Υπέρτασης, Αθήνα, 7 Ιουνίου 2019

Conflicts of interest

□None

□Female

□DoB: 21 JAN 1976, 43yo

Background

2008

- Thrombophilia (lupus anticoagulant)
- Hypothyroidism

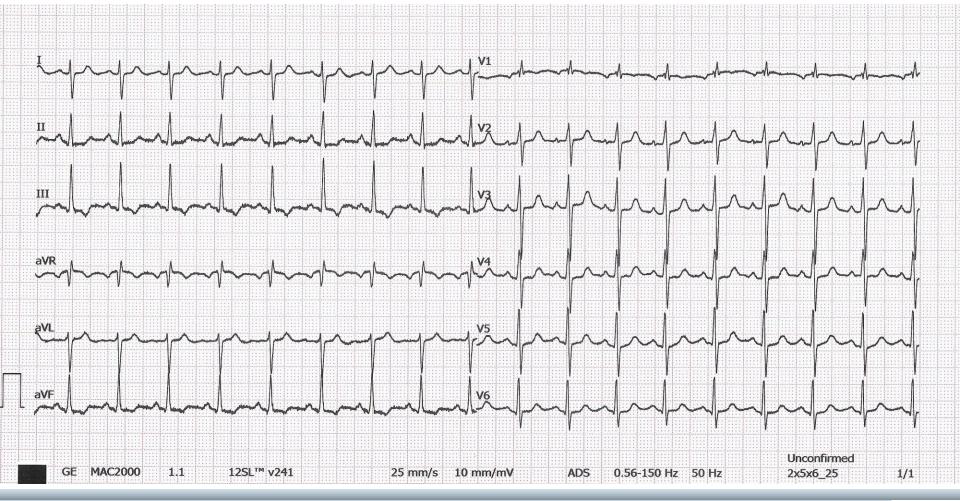
2010

- Cutaneous lupus erythematosus
 - Put on hydroxychloroquine for 6m

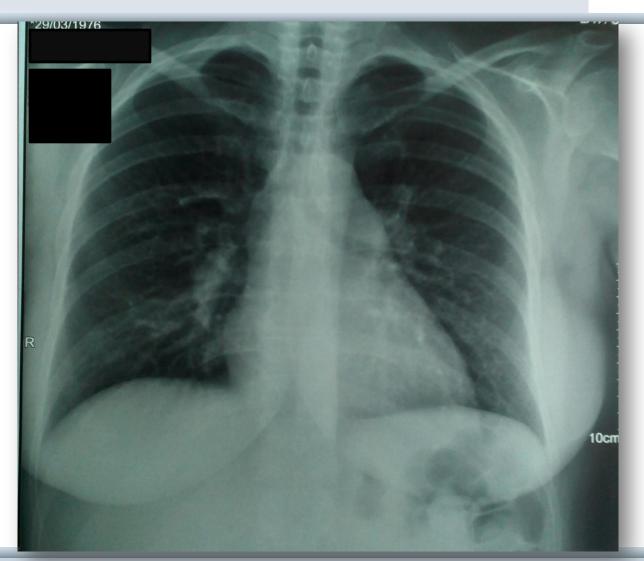
Background

2015

- Dyspnea in mild exertion
- WHO FC II → III


- Loud S2 (P2)
- Normal breath sounds
- BP: 135/75, 105 bpm, SATs: 98%

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Α΄ Καρδιολογική Κλινική ΑΧΕΠΑ Ιατρείο Πνευμονικής Υπέρτασης



Chest x-ray

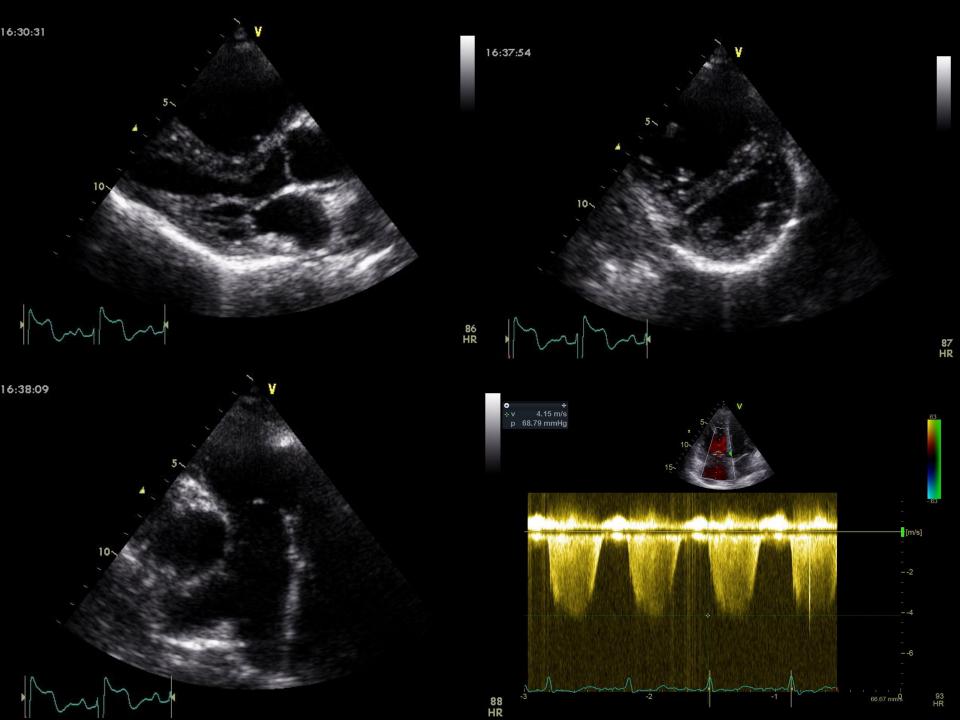
Blood tests

- Ht 46.9%, Hb 15.8mg/dl
- Fe= $30 \mu g/dl$ (NR $37-145 \mu g/dl$)
- ferritin= 118 ng/ml (NR 13-150ng/ml)
- SGOT= 43 U/lt, SGPT=37 U/lt, LDH= 236μU/lt
- Uric acid= 9.6 gr/dl
- TSH = 2.1 mU/L

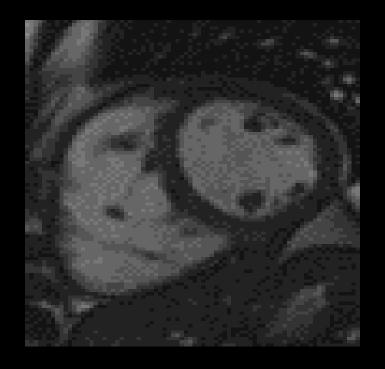
NTproBNP= 2263 pg/ml

Blood tests

Immunology tests:

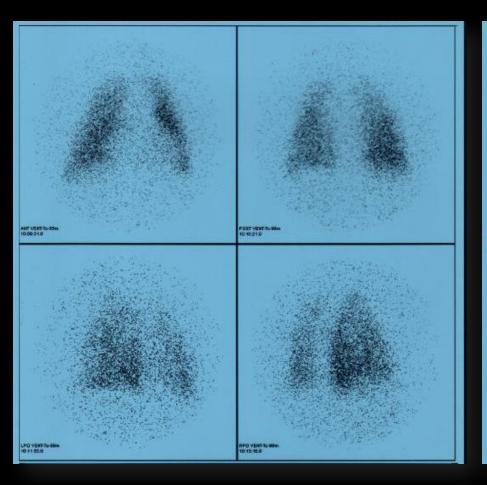

- ANA 1/640
- IgG Anti-cardiolipin antibodies 25.5mplU/ml (+)
- IgM Anti-cardiolipin antibodies 12.5mplU/ml (+)
- anti-ENA screen>100U/ml (+)

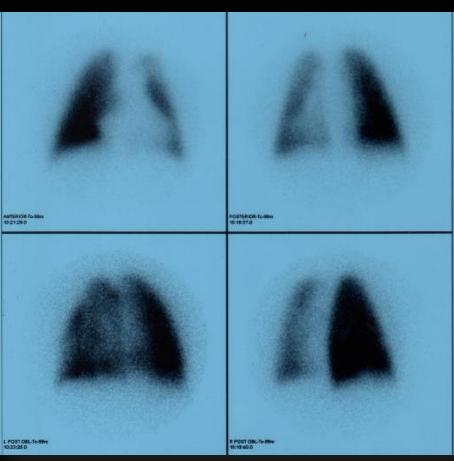
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Α΄ Καρδιολογική Κλινική ΑΧΕΠΑ Ιατρείο Πνευμονικής Υπέρτασης


	Pre	Post		
SpO ₂	98	93		
HR	107	128		
Dyspnoe	0	3		
Fatigue	0	2		
Total distance: 387m				

CMR

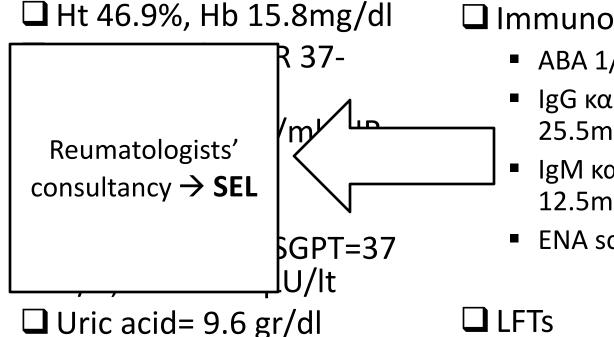
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Α΄ Καρδιολογική Κλινική ΑΧΕΠΑ Ιατρείο Πνευμονικής Υπέρτασης




LFTs

- FEV1 (%pred) 93%
- FVC (%pred) 100%
- DLCO (%pred) 60%

V/Q scan



Blood tests

proBNP= 2263 pg/ml

- ☐ Immunology tests:
 - ABA 1/640
 - IgG καρδιολιπίνης 25.5mplU/ml (+)
 - IgM καρδιολιπίνης 12.5mplU/ml (+)
 - ENA scr >100U/ml (+)

- FEV1 (%pred) 93%
- FVC (%pred) 100%
- DLCO (%pred) 60%

RHC

Hb: 15.8 g/dl, HR: 101/min BSA: 1.86m ²	Baseline	Baseline			
	Pressure (mmHg)	SAT (%)			
RA	9				
RV	101/3				
PA	103/37/m <mark>60</mark>	70			
PAWP	10				
PVR (Wood)	6.9	6.9			
PVRi (Woodxm²)	13	13			
CO (L/min)	7.2	7.2			
CI (L/min/m²)	3.8	3.8			
	•				

Comprehensive clinical classification of pulmonary hypertension

1. Pulmonary arterial hypertension

- 1.1 Idiopathic
- 1.2 Heritable
 - 1.2.1 BMPR2 mutation
 - 1.2.2 Other mutations
- 1.3 Drugs and toxins induced
- 1.4 Associated with:
 - 1.4.1 Connective tissue disease
 - 1.4.2 numan immunouenciency virus (niv) infection
 - 1.4.3 Portal hypertension
 - 1.4.4 Congenital heart disease (Table 5)
 - 1.4.5 Schistosomiasis

Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis

- 1'.1 Idiopathic
- 1'.2 Heritable
 - 1'.2.1 EIF2AK4 mutation
 - 1'.2.2 Other mutations
- 1'.3 Drugs, toxins and radiation induced
- 1'.4 Associated with:
 - 1'.4.1 Connective tissue disease
 - 1'.4.2 HIV infection

1". Persistent pulmonary hypertension of the newborn

2. Pulmonary hypertension due to left heart disease

- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies
- 2.5 Congenital/acquired pulmonary veins stenosis

3. Pulmonary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitial lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions

- 4.1 Chronic thromboembolic pulmonary hypertension
- 4.2 Other pulmonary artery obstructions
 - 4.2.1 Angiosarcoma
 - 4.2.2 Other intravascular tumors
 - 4.2.3 Arteritis
 - 4.2.4 Congenital pulmonary arteries stenoses
 - 4.2.5 Parasites (hydatidosis)

5. Pulmonary hypertension with unclear and/or multifactorial mechanisms

- Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: pulmonary tumoral thrombothic microangiopathy, fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension

ERS

EUROPEAN RESPIRATOR SOCIETY

Treatment

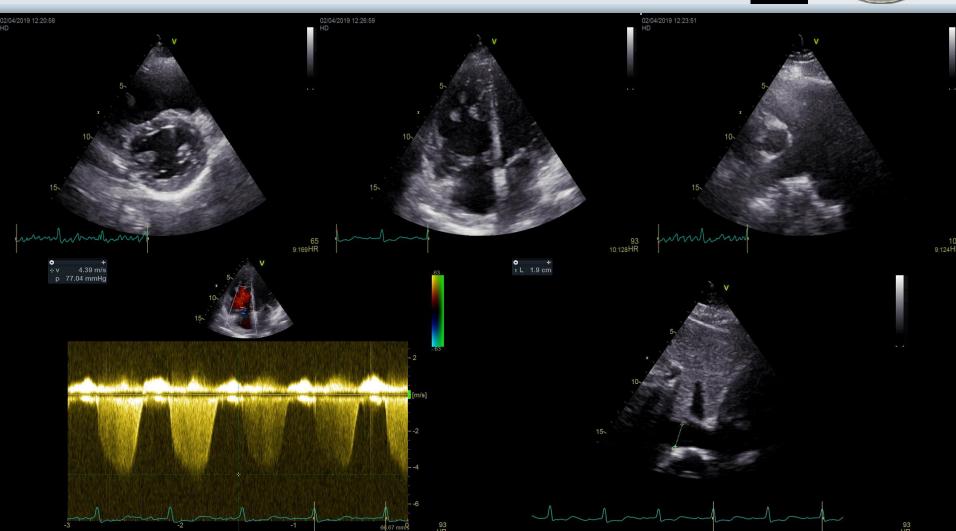
- ☐Ambrisentan 10mg OD
- ☐ Tadalafil 40mg OD
- ☐ Hydroxychloroquine 200mg BiD (plaquenil)
- ☐ Methylprednisolone 16mg BiD (progressive tampering)
- □Thyrohormone 0.1µg OD

Follow Up

	Baseline		6 months I	-U	
	Pressure (mmHg)	SAT (%)	Pressure (mmHg)	SAT (%)	
Hb (mg/dl)	15.8		11.2		
RA	9		5		
RV	101/3		74/2		
mPAP	103/37/m <mark>60</mark>	70	64/23/m 41	84	
PAWP	10		9		
PVR (Wood)	6.9		3.3		
PVRi (Wxm²)	13		6.2		
CO (L/min)	7.2		11.3		
CI	3.8		3.8		
6MWD (m)	387		612		
NT-proBNP	2263		75		

Follow Up

	Baseline		6 months	6 months FU		U	
	Pressure (mmHg)	SAT (%)	Pressure (mmHg)	SAT (%)	Pressure (mmHg)	SAT (%)	
Hb (mg/dl)	15.8		11.2	11.2		11.8	
RA	9		5		8		
RV	101/3		74/2		67/7		
mPAP	103/37/m60	70	64/23/m41	84	69/26/m46	82	
PAWP	10		9		11		
PVR (Wood)	6.9		3.3		3.5		
PVRi (Wxm²)	13		6.2		6.7		
CO (L/min)	7.2		11.3		9.3		
CI	3.8		6		4.89		
6MWD (m)	387		612		600		
NT-proBNP	2263		75		44		


04/2019

- ☐ Dyspnoe in mild exertion since 2m
- ☐WHO FC III
- ☐ Hb 7.1mg/dl
 - menorrhagia
 - Received 3 RCC

ECHO - 04/19

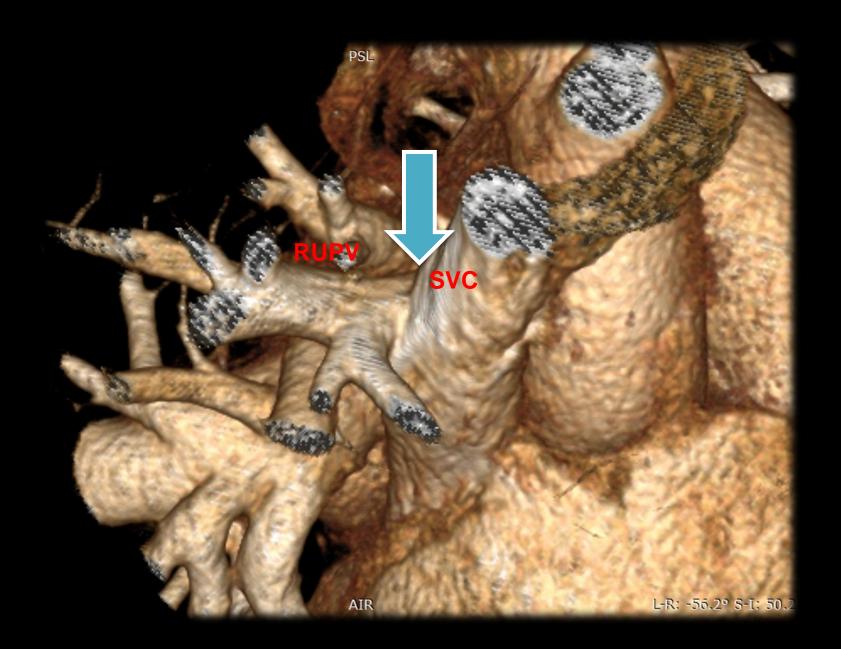
4/2018 **RHC**

	48 months FU (04/19)			
	Pressure (mmHg)	SAT (%)		
Hb (mg/dl)	10.5			
RA	10			
RV	79/0			
mPAP	75/37/m <mark>53</mark>	85		
PAWP	8			
PVR (Wood)	3.2			
PVRi (Wxm²)	6.2			
CO (L/min)	13.8			
CI	7			
6MWD (m)	600			
NT-proBNP	83			

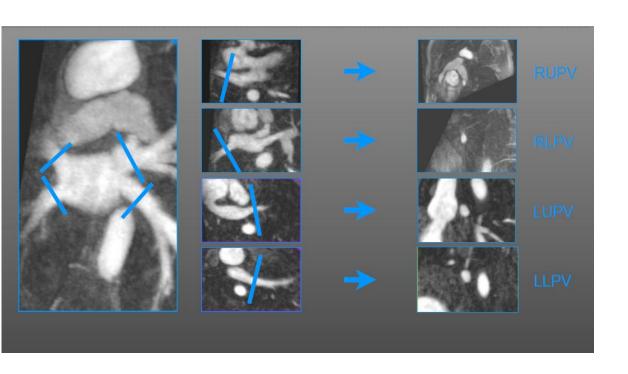
5/2018 **RHC**

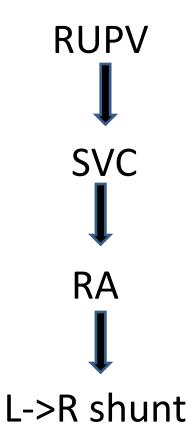
	48 months FU (04/19)			
	Pressure (mmHg)	SAT (%)		
Hb (mg/dl)	10.5			
RA	10			
RV	79/0			
mPAP	75/37/m <mark>53</mark>	85		
PAWP	8			
PVR (Wood)	3.2			
PVRi (Wxm²)	6.2			
CO (L/min)	13.8			
CI	7			
6MWD (m)	600			
NT-proBNP	83			

5/2018 **RHC**

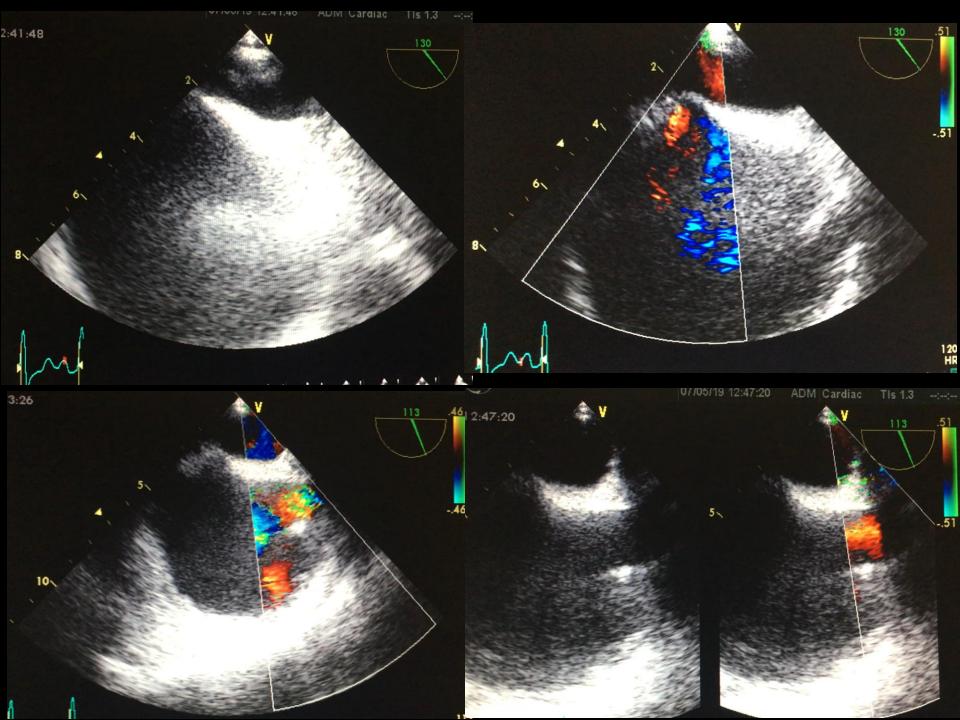


	48 months FU (04/19)			
	Pressure (mmHg)	SAT (%)		
Hb (mg/dl)	10.5			
RA	10			
RV	79/0			
mPAP	75/37/m <mark>53</mark>	85		
PAWP	8			
PVR (Wood)	3.2			
PVRi (Wxm²)	6.2			
CO (L/min)	13.8			
CI	7			
6MWD (m)	600			
NT-proBNP	83			

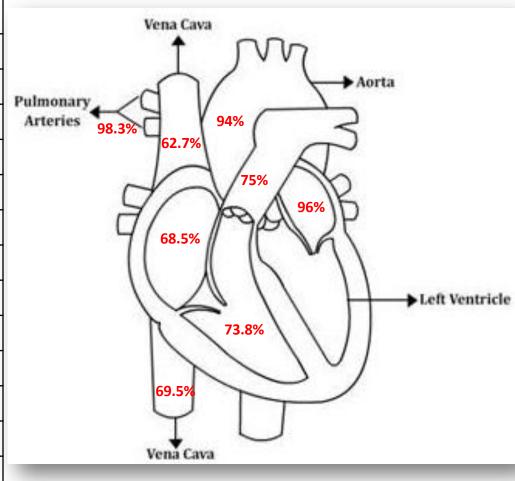

RHCs

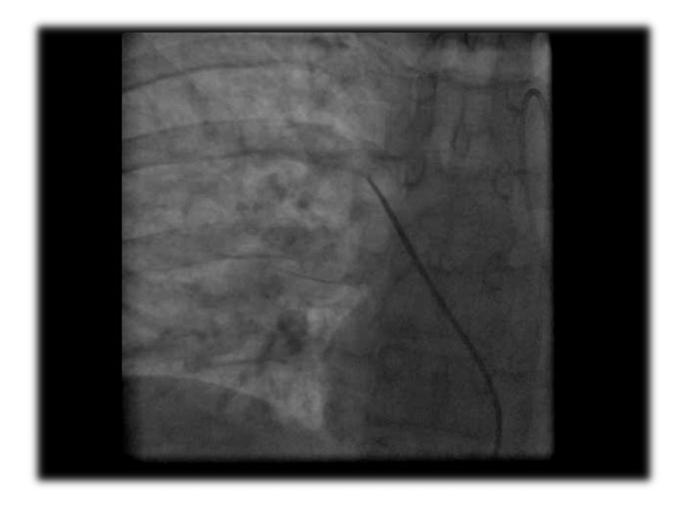


	Baseline		6 months	FU	24 months	FU	48 months F	U (05/19)
	Pressure (mmHg)	SAT (%)	Pressure (mmHg)	SAT (%)	Pressure (mmHg)	SAT (%)	Pressure (mmHg)	SAT (%)
Hb (mg/dl)	15.8		11.2		11.8		10.5	5
RA	9		5		8		10	
RV	101/3		74/2		67/7		79/0	
mPAP	103/37/m <mark>60</mark>	70	64/23/m41	84	69/26/m46	82	75/37/m53	85
PAWP	10		9		11		8	
PVR (Wood)	6.9		3.3		3.5		3.2	
PVRi (Wxm²)	13		6.2		6.7		6.2	
CO (L/min)	7.2		11.3		9.3		13.8	3
CI	3.8		6		4.89		7	
6MWD (m)	387		612		600		600)
NT-proBNP	2263		75		44		83	



RHCs


	Baseline		6 months	FU	24 months	FU	48 months F	U (05/19)
	Pressure (mmHg)	SAT (%)	Pressure (mmHg)	SAT (%)	Pressure (mmHg)	SAT (%)	Pressure (mmHg)	SAT (%)
Hb (mg/dl)	15.8		11.2		11.8		10.5	5
RA	9		5		8		10	
RV	101/3		74/2		67/7		79/0	
mPAP	103/37/m <mark>60</mark>	70	64/23/m41	84	69/26/m46	82	75/37/m53	85
PAWP	10		9		11		8	
PVR (Wood)	6.9		3.3		3.5		3.2	
PVRi (Wxm²)	13		6.2		6.7		6.2	
CO (L/min)	7.2		11.3		9.3		13.8	3
CI	3.8		6		4.89		7	
6MWD (m)	387		612		600		600)
NT-proBNP	2263		75		44		83	


RHC – indirect Fick – 04/2019

BSA: 1.94m ²	Hb: 9.6 g/dl, HR: 97/min	Pressures (mmHg)		
RA		12		
RV		100/19		
PA		104/30/m58		
LA		17		
LV		127/17		
Ao	125/87/m105			
PVR (Wood)	5.1			
PVRi (Woodxr	9.9			
SVRi / SVR	SVRi / SVR			
Qp (L/min) / (7.9/4.05			
Qs (L/min) / C	5.3/2.7			
Qp/Qs	1.48			
L→R shunt	2.88			

So, who came first?

9

Comprehensive clinical classification of pulmonary hypertension

1. Pulmonary arterial hypertension

- 1.1 Idiopathic
- 1.2 Heritable
 - 1.2.1 BMPR2 mutation
 - 1.2.2 Other mutations

1.3 Drugs and toxins induced

- 1.4 Associated with:
 - 1.4.1 Connective tissue disease
 - 4.2 human immune deficiency—rirus (HIV) infection
 - 1.4.5 POLICI HYPERICHSION
 - 1.4.4 Congenital heart disease (Table 5)
 - 1.4.3 Schistosonnasis

1'. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis

- 1'.1 Idiopathic
- 1'.2 Heritable
 - 1'.2.1 EIF2AK4 mutation
 - 1'.2.2 Other mutations
- 1'.3 Drugs, toxins and radiation induced
- 1'.4 Associated with:
 - 1'.4.1 Connective tissue disease
 - 1'.4.2 HIV infection

1". Persistent pulmonary hypertension of the newborn

2. Pulmonary hypertension due to left heart disease

- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies
- 2.5 Congenital/acquired pulmonary veins stenosis

3. Pulmonary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitial lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases (Web Table III)

4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions

- 4.1 Chronic thromboembolic pulmonary hypertension
- 4.2 Other pulmonary artery obstructions
 - 4.2.1 Angiosarcoma
 - 4.2.2 Other intravascular tumors
 - 4.2.3 Arteritis
 - 4.2.4 Congenital pulmonary arteries stenoses
 - 4.2.5 Parasites (hydatidosis)

5. Pulmonary hypertension with unclear and/or multifactorial mechanisms

- 5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: pulmonary tumoral thrombothic microangiopathy, fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension

ERS :

www.escardio.org

Clinical classification of pulmonary arterial hypertension associated with congenital heart disease

1. Eisenmenger's syndrome

Includes all large intra- and extra-cardiac defects which begin as systemic-to-pulmonary shunts and progress with time to severe elevation of PVR and to reversal (pulmonary-to-systemic) or bidirectional shunting; cyanosis, secondary erythrocytosis, and multiple organ involvement are usually present.

2. PAH associated with prevalent systemic-to-pulmonary shunts

- Correctable^a
- Non-correctable

Includes moderate to large defects; PVR is mildly to moderately increased, systemic-to-pulmonary shunting is still prevalent, whereas cyanosis at rest is not a feature.

3. PAH with small/coincidental defects

Marked elevation in PVR in the presence of small cardiac defects (usually ventricular septal defects <1 cm and atrial septal defects <2 cm of effective diameter assessed by echo), which themselves do not account for the development of elevated PVR; the clinical picture is very similar to idiopathic PAH. Closing the defects is contra-indicated.

4. PAH after defect correction

Congenital heart disease is repaired, but PAH either persists immediately after correction or recurs/develops months or years after correction in the absence of significant postoperative haemodynamic lesions.

PAH = pulmonary arterial hypertension; PVR = pulmonary vascular resistance.

^aWith surgery or intravascular percutaneous procedure.

^bThe size applies to adult patients. However, also in adults the simple diameter may be not sufficient for defining the haemodynamic relevance of the defect, and also the pressure gradient, the shunt size and direction, & the pulmonary to systemic flows ratio should be considered

(Web Table II on the web at; www.escardio.org/guidelines).

Anatomical-pathophysiological

Classification of congenital systemic-to-pulmonary shunts associated with pulmonary arterial hypertension

1. Type

1.1 Simple pre-tricuspid shunts

- 1.1.1 Atrial septal defect (ASD)
 - 1.1.1.1 Ostium secundum
 - 1.1.1.2 Sinus venous
 - 1.1.1.3 Ostium primum
- 1.1.2 Total or partial unobstructed anormalous pulmonary venous

1.2 Simple post-tricuspid shunts

- 1.2.1 Ventricular septal defect (VSD)
- 1.2.2 Patent ductus arteriosus

1.3 Combined shunts

Describe combination and define predominant defect

1.4 Complex congenital heart disease

- 1.4.1 Complete atrioventricular septal defect
- 1.4.2 Truncus arteriosus
- 1.4.3 Single ventricle physiology with unobstructed pulmonary blood flow
- 1.4.4 Transposition of the great arteries with VSD (without pulmonary stenosis) and/or patent ductus arteriosus
- 1.4.5 Other

2. Dimension (specify for each defect if more than one congenital heart defect exists)

2.1 Haemodynamic (specify Qp/Qs)^a

- 2.1.1 Restrictive (pressure gradient accross the defect)
- 2.1.2 Non-restrictive

2.2 Anatomicb

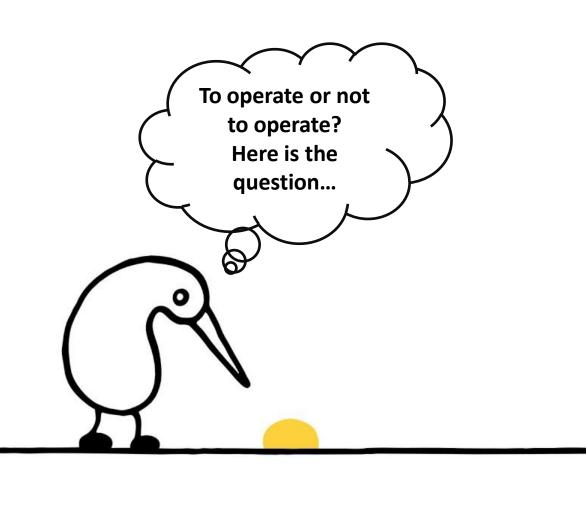
- 2.2.1 Small to moderate (ASD \leq 2.0 cm and VSD \leq 1.0 cm)
- 2.2.2 Large (ASD >2.0 cm and VSD >1.0 cm)

3. Direction of shunt

- 3.1 Predominantly systemic-to-pulmonary
- 3.2 Predominantly pulmonary-to-systemic
- 3.3 Bidirectional
- 4. Associated cardiac and extracardiac abnormalities

5. Repair status

- 5.1 Unoperated
- 5.2 Palliated (specify type of operation/s, age at surgery)
- 5.3 Repaired (specify type of operation/s, age at surgery)


ERS

a Ratio of pulmonary (Qp) to systemic (Qs) blood flow.

b The size applies to adult patients.

Pulmonary arterial hypertension associated with adult congenital heart disease

Recommendations				
PVRi (Wu·m²)	PVR (Wu)	Correctable ^a	Class	Level
<4	<2.3	Yes	IIa	С
>8	>4.6	No	IIa	С
4-8	2.3-4.6	Individual patient evaluation in tertiairy centres	IIa	С

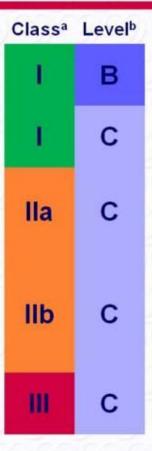
PVR = pulmonary vascular resistance.

PVRi = pulmonary vascular resistance inde.

WU = Wood units.

^aWith surgery or intravascular percutaneous procedure.

9.9	5.1


Indications for Intervention in Atrial Septal Defect

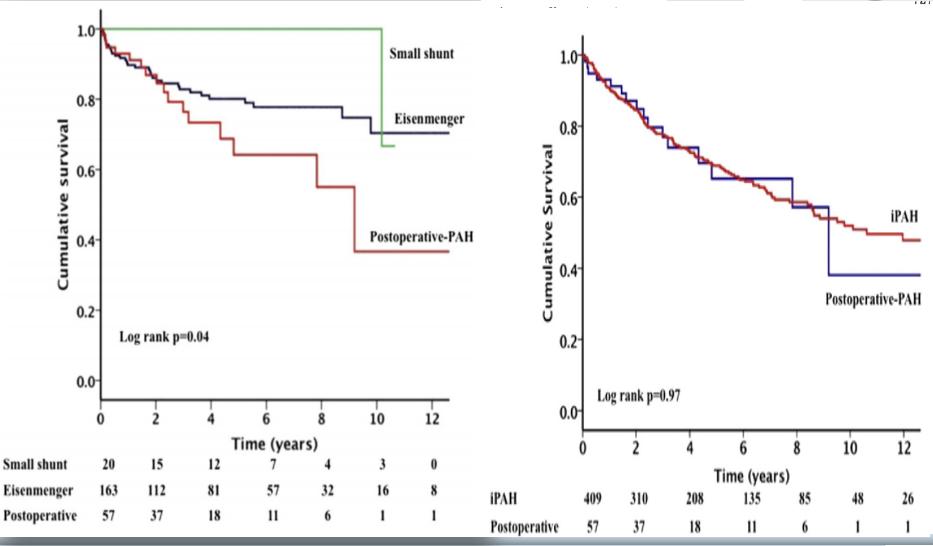
- Patients with significant shunt (signs of RV volume overload) and PVR < 5 WU should undergo ASD closure regardless of symptoms.
- Device closure is the method of choice for secundum ASD closure when applicable.
- All ASDs regardless of size in patients with suspicion of paradoxical embolism (exclusion of other causes) should be considered for intervention.
- Patients with PVR ≥ 5 WU but < 2/3 SVR or PAP < 2/3 systemic pressure (baseline or when challenged with vasodilators, preferably nitric oxide, or after targered PAH therapy) and evidence of net L-R shunt (Qp:Qs > 1.5) may be considered for intervention.
- ASD closure must be avoided in patients with Eisenmenger physiology.

PVR 5.1 SVR 8.9 PAP 104 syst pres 125 Qp/Qs=1.48

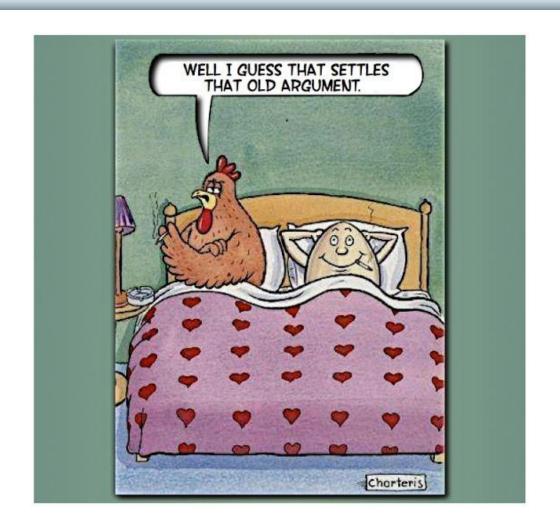
shunt; PAH = pulmonary arterial hypertension;

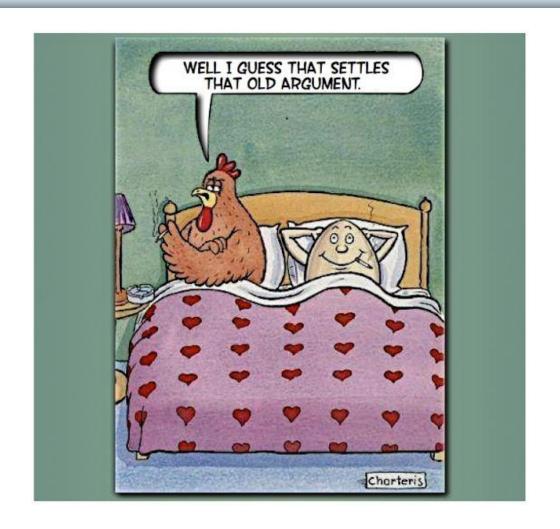
ry vascular resistance; Qp:Qs = pulmonary to systemic flow ratio;
units.

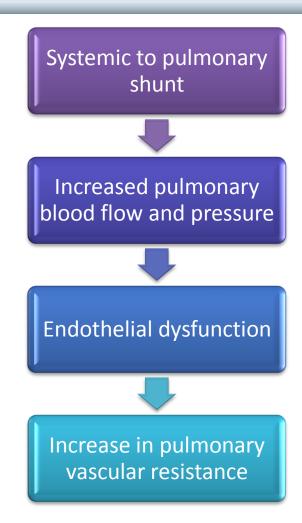
Anomalous Pulmonary Venous Connections


	Therapeutic				
I	B-NR	Surgical repair is recommended for patients with partial anomalous pulmonary			
		venous connection when functional capacity is impaired and RV enlargement is			
		present, there is a net left-to-right shunt sufficiently large to cause physiological			
		sequelae (e.g., Qp:Qs ≥1.5:1), PA systolic pressure is less than 50% systemic			
		pressure and pulmonary vascular resistance is less than one third of systemic			
		resistance.			
- 1	B-NR	Repair of partial anomalous pulmonary venous connection is recommended at			
		the time of closure of a sinus venosus defect or ASD.			
ı	B-NR	Repair of a scimitar vein is recommended in adults when functional capacity is			
		impaired, evidence of RV volume overload is present, there is a net left-to-right			
		shunt sufficiently large to cause physiological sequelae (e.g., Qp:Qs ≥1.5:1), PA			
		systolic pressure is less than 50% systemic pressure and pulmonary vascular			
		resistance is less than one third systemic.			
lla	B-NR	Surgery can be useful for right- or left-sided partial anomalous pulmonary			
		venous connection in asymptomatic adults with RV volume overload, net left-to-			
		right shunt sufficiently large to cause physiological sequelae (e.g., Qp:Qs			
		≥1.5:1), pulmonary pressures less than 50% systemic and pulmonary vascular			
		resistance less than one third systemic.			
lla	B-NR	Surgery can be useful for repair of a scimitar vein in adults with evidence of RV			
		volume overload with Op.Oc 1 5.1 or greater			

PVR 5.1 SVR 8.9 PAP 104 syst pres 125 Qp/Qs=1.48




Which came first?



Thank you for your attention!!!©

11/2017

Clinical worsening

WHO FC III

Ambrisentan 10

Tadalafil 20

Furosemide 20

Plaquenil

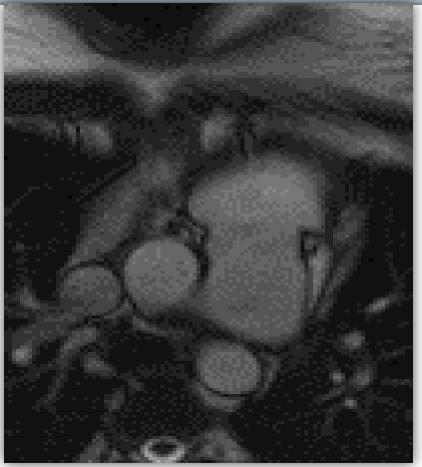
Azathioprine

Methylprednisolone

ASA 100

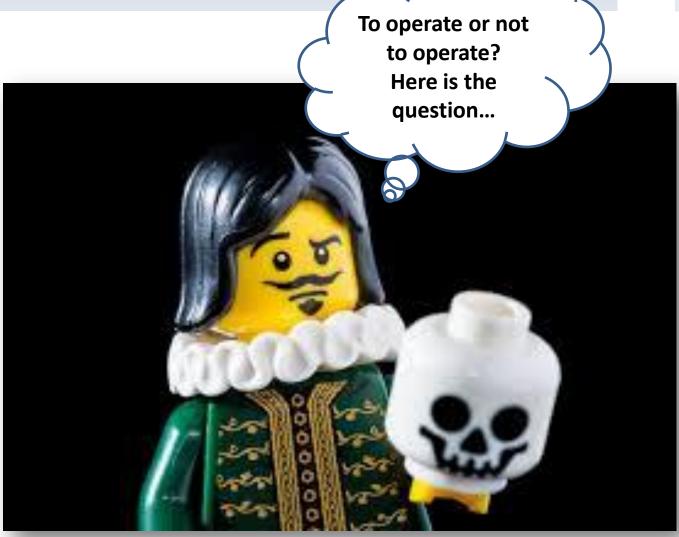
Levothyroxine

Hb 9.6 Fe 23 mcg/dl Ferritin 15 ng/ml


NT-proBNP 83pg/ml

Ambrisentan 10
Tadalafil 20
Furosemide 20
Hydroxycloroquinine
Azathioprine
Methylprednisolone
ASA 100
Levothyroxine

Lets take a closer look...



And now, what?

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Α΄ Καρδιολογική Κλινική ΑΧΕΠΑ Ιατρείο Πνευμονικής Υπέρτασης

THANK YOU FOR YOUR ATTENTION