What have we learned from national PAH registries?

Olivier SITBON, MD, PhD

Centre de Référence de l'Hypertension Pulmonaire – Service de Pneumologie Hôpital Universitaire Bicêtre – INSERM UMR S999 – Université Paris-Sud Le Kremlin-Bicêtre – France

Disclosures – Olivier Sitbon, MD PhD

- Relevant financial relationships with a commercial interest:
 - Actelion/J&J: consultancy (current), board or advisory committee (current), speaker (current), research support (current)
 - Bayer/Merck: consultancy (current), board or advisory committee (current), speaker (current), research support (current)
 - **GSK:** consultancy (past), board or advisory committee (past), speaker (past), research support (current)
 - United Therapeutics: consultancy (current)
 - Gossamer Bio: board or advisory committee (current)

PAH Registries

Despite limitations due to their observational and uncontrolled nature, PAH registries may provide important information on:

- Incidence and / or prevalence of the disease
- Characteristics of patients in real life
- Practice patterns
- Long-term outcome and survival
- Variables predicting survival

Methodology of registries: A key issue!

- Ideally registries have to be prospective, multicentre and to include consecutive patients
- Quality control of data is essential
- Long period of observation with no loss to follow-up
- Finally, the design of registries should be adapted to the question we want to answer

Methodology of registries: 3 levels

Non-selective registries

Pros: epidemiology (prevalence) and clinical characteristics

Cons: survival analysis and prognosis

Registries of newly diagnosed patients

Pros: epidemiology (incidence), survival analysis, prognosis and risk equation from baseline variables

Cons: assessment of time-dependent variables and treatment goals

Interventional registries

Pros: assessment of time-dependent variables and treatment goals

Available PH Registries

Registry	Duration of inclusion (years)	Study Population (n)	Prospective/ Retrospective	Multicentre (n)	Incident patients only
NIH (1987) ¹	5	IPAH (187)	Pro	Yes (32)	No
French (2006) ²	1	PAH (674)	Pro	Yes (17)	No
Scottish (2007) ³	9	PAH (374)	Retro	Yes	No
Chinese (2007) ⁴	6	IPAH (72)	Pro	Yes	No
Swiss (2008) ⁵	5	PH (250)	Pro	Yes	No
Chicago (2009) ⁶	26	PAH (576)	Retro & Pro	Yes (3)	No
REVEAL (2010) ⁷	4	PAH (2716)	Pro	Yes (54)	No
CTEPH (2011) ⁸	2	CTEPH (679)	Pro	Yes	Yes
UK (2012) ⁹	8	PAH (482)	Pro	Yes (8)	Yes
Spanish (2012) ¹⁰	10	PAH & CTEPH (866)	Pro & Retro.	Yes (31)	No
COMPERA (2013) ¹¹	8	PAH (587, now 8700)	Pro & Retro.	Yes (28)	No
SPAHR (2017) ¹²	9	PAH (457)	Pro	Yes (8)	Yes
French (current)	≈20 years	PH (≈12 800)	Pro	Yes (25)	Yes
. 5.1.6		" 0 0	14#4 0000		1.01.014.100.40

^{1.} Rich S, et al. Ann Intern Med 1987.

^{2.} Humbert M, et al. Am J Respir Crit Care Med 2006.

^{3.} Peacock AJ, et al. Eur Respir J 2007.

^{4.} Jing Z-C, et al. Chest 2007.

^{5.} Tueller C, et al. Swiss Med Wkly 2008.

Thenappan T, et al. Eur Respir J 2007.
 Badesch DB, et al. Chest 2010.

^{8.} Pepke-Zaba J, et al. Circulation 2011.

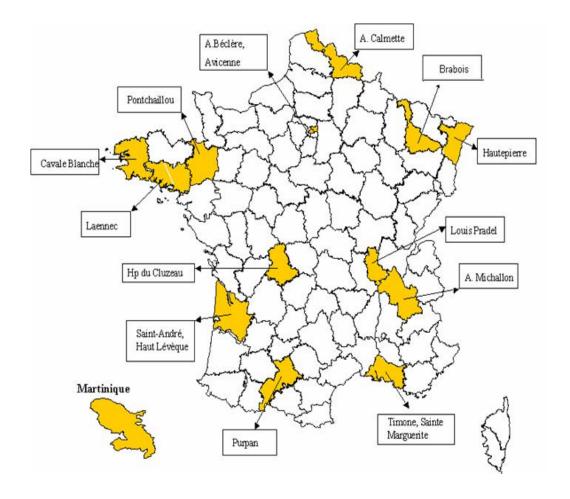
^{9.} Ling Y, et al. Am J Respir Crit Care Med 2012.

^{10.} Escribano-Subias P, et al. Eur Respir J 2012.

^{11.} Hoeper MM, et al. Int J Cardiol 2013.

^{12.} Kylhammar D, et al. Eur Heart J 2018.

The French PAH Registry (2002-2003 followed until 2006)


- 674 patients, 17 medical centres (respiratory medicine, cardiology, internal medicine) spread across France
- Adult patients (>18 years)
 suffering from PAH (idiopathic, familial or associated conditions)
- Prospective cohort monitored and on-site audits
- Enrolment: 2002-2003

Pulmonary Arterial Hypertension in France

Results from a National Registry

Marc Humbert, Olivier Sitbon, Ari Chaouat, Michèle Bertocchi, Gilbert Habib, Virginie Gressin, Azzedine Yaici, Emmanuel Weitzenblum, Jean-François Cordier, François Chabot, Claire Dromer, Christophe Pison, Martine Reynaud-Gaubert, Alain Haloun, Marcel Laurent, Eric Hachulla, and Gérald Simonneau

Service de Pneumologie, Centre des Maladies Vasculaires Pulmonaires, Hôpital Antoine Béclère, Assistance-Publique-Hôpitaux de Paris, Université Paris-Sud, Clamart, France; Service de Pneumologie, Hôpital Hautepierre, Strasbourg; Service de Pneumologie, Hôpital Louis-Pradel, Lyon; Service de Cardiologie, Hôpital de la Timone; Service de Pneumologie, Hôpital Sainte Marguerite, Marseille; Actelion Pharmaceuticals France, Paris; Service de Pneumologie, Hôpital de Brabois, Vandoeuvre-les-Nancy; Service de Chirurgie Thoracique, Hôpital du Haut Levesque, Bordeaux; Département Médecine Aiguë Spécialisée, Hôpital Michallon, Grenoble; Service de Pneumologie, Hôpital Laennec, Nantes; Service de Cardiologie, Hôpital Pontchaillou, Rennes; and Service de Médecine Interne, Hôpital Claude Huriez, Lille, France

Socio-demographic data

Age	50 ± 15
Women	65%
Men	35%

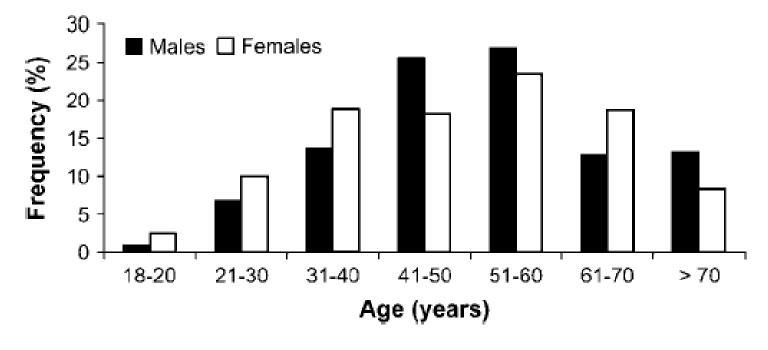
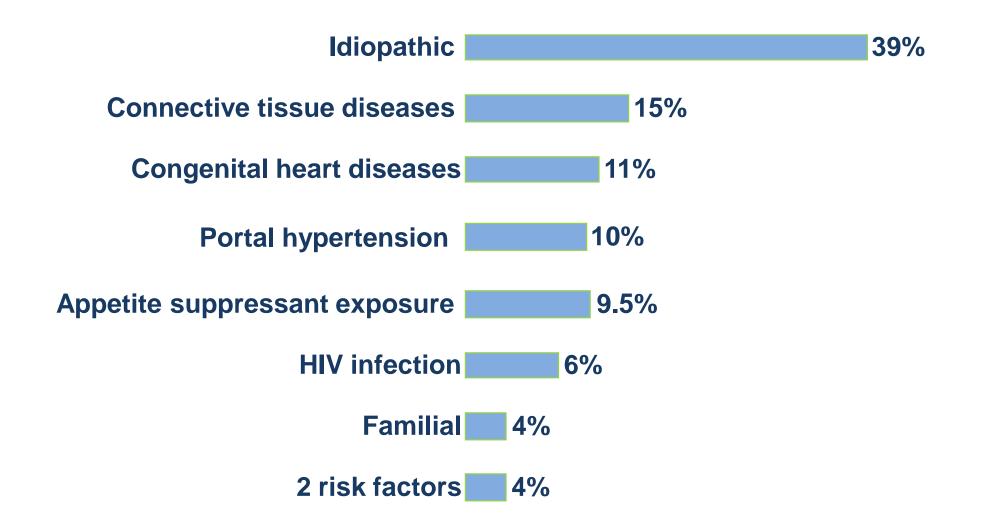
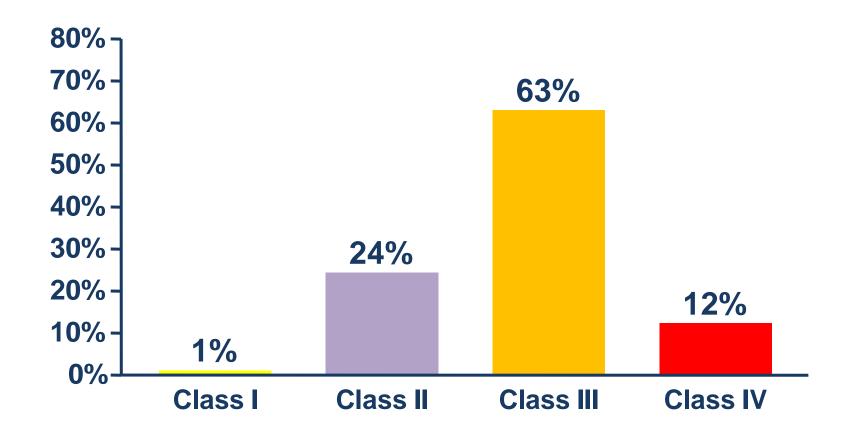
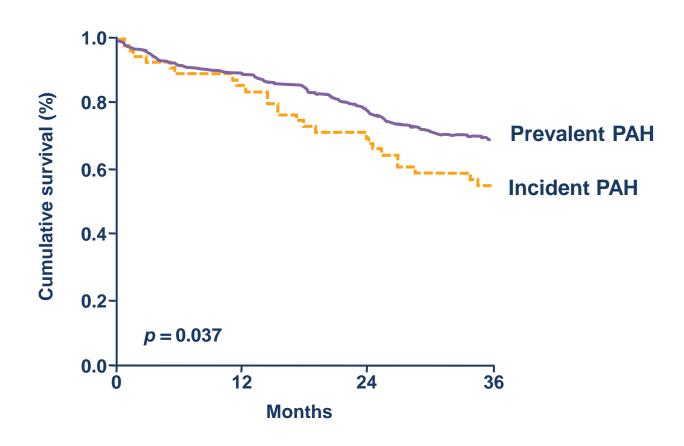



Figure 1. Distribution of patients with pulmonary arterial hypertension according to age based on sex.

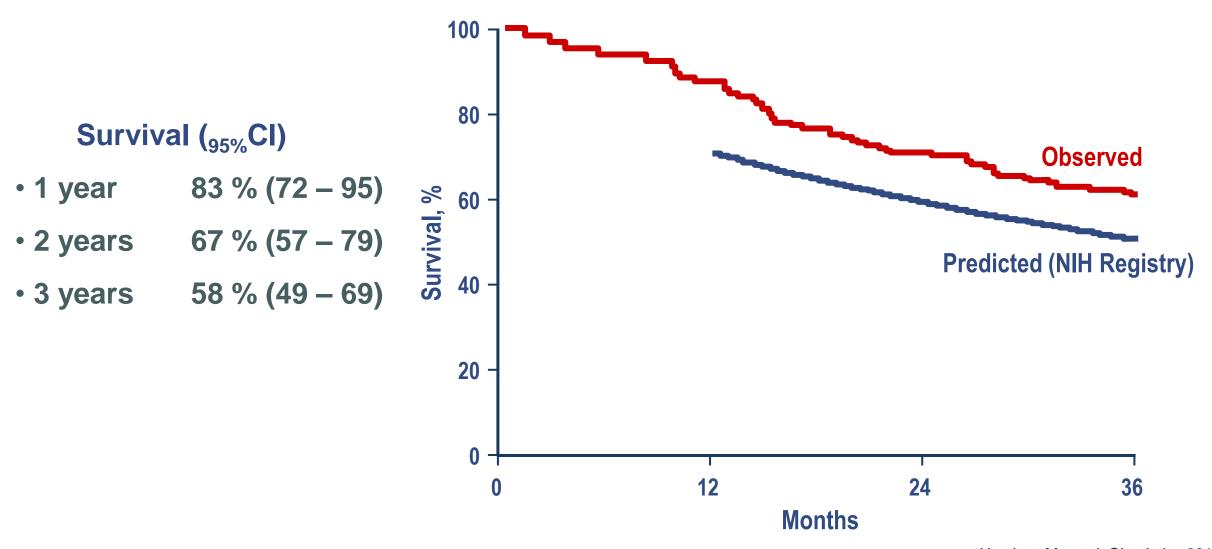
Type of PAH at diagnosis


National and regional prevalences

Average 15 / million Range 5 to 25 / million


Functional classes at diagnosis

→ Delay between onset of symptoms and diagnosis: 27 months



Survival in the French cohort

SURVIVAL OF PAH IN THE MODERN ERA (IDIOPATHIC, FAMILIAL & ANOREXIGEN-INDUCED PAH POPULATION)

Survival in the French cohort (incident)

The modern age of PAH registries

- Several large, prospective, multicentre registries are now available worldwide (Europe, US, Canada, Latin America, China, Japan, Middle East & Africa, Australia & NZ etc...)
- Demographics have changed in the western world with increased age and comorbidities
- Increased number of approved therapies, availability of combination therapies and international guidelines have markedly changed management
- Registries have been a key tool for addressing novel questions such as risk stratification and treatment goals

French Idiopathic / Heritable / Associated PAH cohorts (2002 – 2003 & 2006 – 2009)

Group 1 (PAH) incident cases	PAH registry (2006 – 2009)	Previous registry (2002 – 2003)
n	718	121
Sex-Ratio F / M	1.33	1.70
Age, yrs (range)	56 ± 15 (18 – 86)	53 ± 17 (19 – 85)
Patients > 70 y-o	24 %	9 %
NYHA FC III-IV	73 %	81 %
6-min walk distance, m	325 ± 123	312 ± 114

French I / H / APAH cohorts (2002 - 2003 & 2006 - 2009)

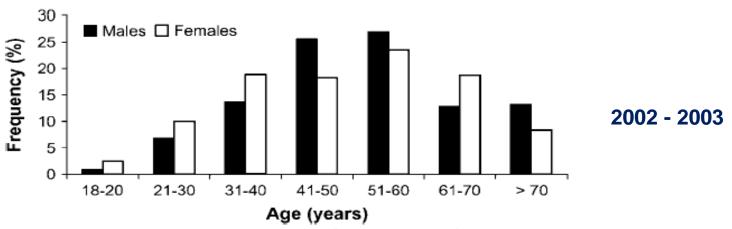
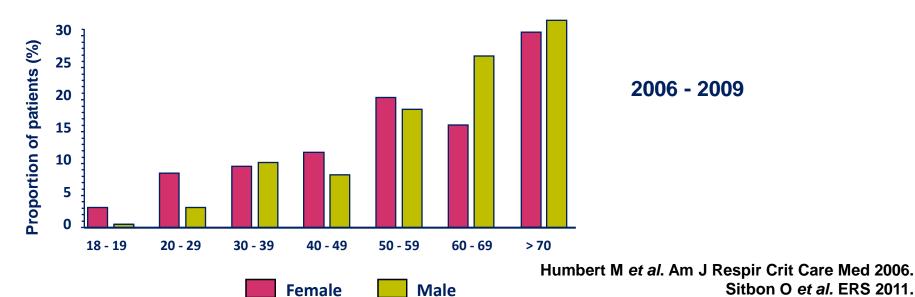
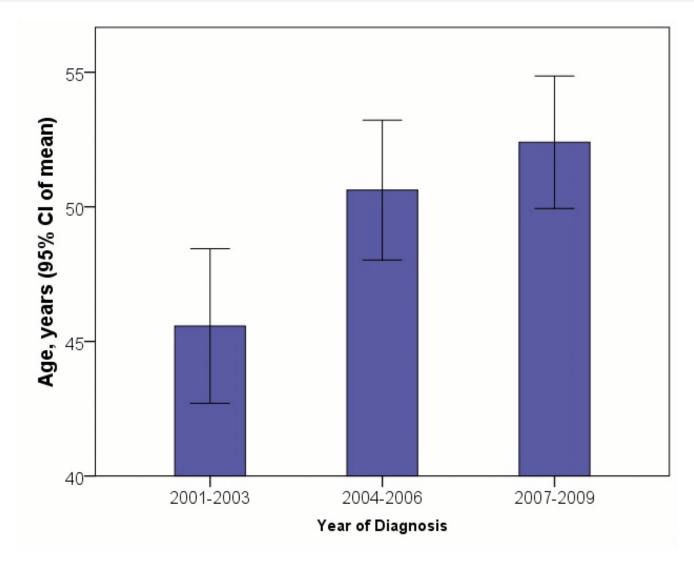
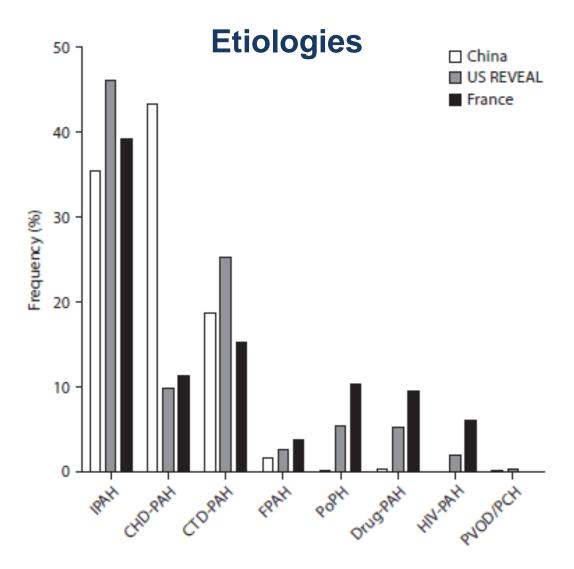




Figure 1. Distribution of patients with pulmonary arterial hypertension according to age based on sex.

Increasing age of 'pure IPAH' in the UK and Ireland

Epidemiology of 'pure IPAH' has changed between 2001 and 2009 in the UK and Ireland

- Increasing
 - Incidence
 - Age
 - Body mass index and obesity
 - Co-morbidities


- Decreasing
 - DLCO

- No change
 - Duration
 - Severity

Baseline characteristics of PAH at the time of diagnosis from different registries

Registry	NIH ⁹	French ⁷	United States ⁶	REVEAL ⁸	United Kingdom/ Ireland ⁴	ASPIRE ^{11,a}	COMPERA ⁵
Year	1987	2006	2007	2010	2012	2012	2013
Subjects, n	187	674	578	2,525	482	175	587
Age, years	36 ± 15	50 ± 15	48 ± 14	50.1 ± 14.4	50.1 ± 17.1	55 ± 16	71 ± 16
Women, %	63	65.3	77	55.6	69.9	67	60.3
mPAP, mm Hg	60 ± 18	55 ± 15	52 ± 14	50.7 ± 13.6	54.1 ± 13.9	53 ± 13	44 ± 12
PAWP, mm Hg	b	8 ± 3	10 ± 4	9.1 ± 3.5	9.2 ± 3.5	10 ± 3	10 ± 3
RAP, mm Hg	9.7 ± 6	8 ± 5	11 ± 7	9.3 ± 5.6	10.1 ± 6.0	11 ± 6	8 ± 5
CI, L/min/m ²	2.27 ± 0.9	2.50 ± 0.8	2.3 ± 0.9	2.4 ± 0.8	2.1 ± 0.7	2.3 ± 0.8	2.2 ± 0.7
PVRi (WU·m²)	26 ± 14	20.5 ± 10.2	_	21.1 ± 12.5	23.1 ± 10.3	_	_
PVR (WU)	_	_	12.5 ± 7.3	_	12.8 ± 6.3	12.0 ± 5.8	9.6 ± 5.5

European, US & Chinese Registries in the modern management era

European, US & Chinese Registries in the modern management era

Clinical and hemodynamic characteristics

Characteristic	Overall Grou	p 1 PAH		IPAH	IPAH	
	China (n = 956)	USA (n = 2,525)	France (n = 674)	China (n = 383)	USA (n = 1,166)	France (n = 259)
Female, %	70	80	65	70	83	62
Age, years	36±13	50±14	50±15	38±13	50±15	52±15
Obesity (BMI ≥30), %	1.5	33.3	14.8	2.1	38.4	-
Median time from symptom onset to diagnosis, months	30	14	-	24	-	-
WHO FC III/IV, %	53.6	56	75	66	55	81
6MWD, m	378±125	366±126	329±109	353±127	374±129	328±112
mPAP, mm Hg	63±20	51±14	55±15	63±15	52±13	56±14
mRAP, mm Hg	8±5	9±6	8±5	8±6	10±6	9±5
PCWP, mm Hg	9±3	9±4	8±3	8±	9±4	8±3
CI, I/min/m ²	2.5±0.9	2.4±0.8	2.5±0.8	2.2±0.8	2.2±0.8	2.3±0.7
PVRI, Wood•m ²	25±14	21±13	21±10	27±12	23 ±11	23±10
SvO ₂ , %	66±12	63±10	63±9	60±11	62±10	61±10
Acute vasodilator responders, %	2.8	10.2	5.8	5.0	_	10.3

European, US & Chinese Registries in the modern management era

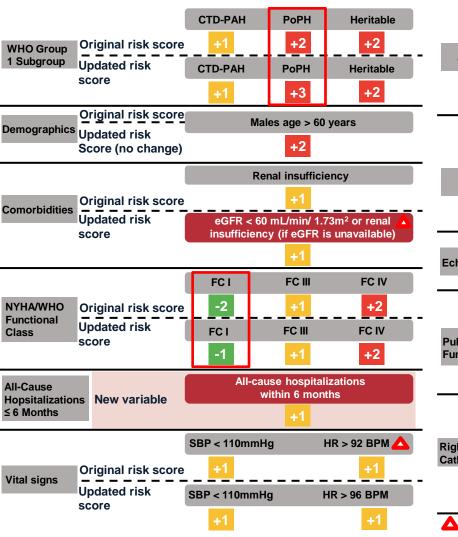
Comorbidities

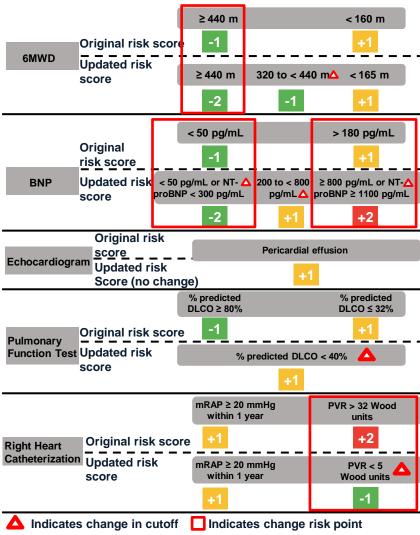
Comorbid condition	US REVEAL China (n = 2,438) (n = 956)		IPAH	IPAH	
			US REVEAL (n = 1,114)	China (n = 338)	
Hypertension	980 (40.2)	44 (4.6)	466 (41.8)	10 (3.0)	
Diabetes	293 (12.0)	16 (1.6)	158 (14.2)	4 (1.2)	
Ischemic cardiovascular event ¹	227 (9.3)	15 (1.6)	114 (10.2)	8 (2.4)	
Chronic parenchymal disease ²	533 (21.9)	29 (3.0)	258 (23.2)	5 (1.5)	
Renal insufficiency	109 (4.9)	8 (0.8)	48 (4.3)	2 (0.6)	
Thyroid disease ³	527 (21.6)	10 (1.0)	227 (20.4)	1 (0.3)	
Cirrhosis	151 (6.2)	4 (0.4)	20 (1.8)	1 (0.3)	
History of VTE ⁴	313 (12.8)	11 (1.2)	164 (14.7)	0 (0)	
Cancer	148 (6.1)	5 (0.5)	69 (6.2)	1 (0.3)	

Four recent registries assessing risk stratification in PAH

Swedish PAH Registry² COMPERA³ French PH Registry⁴

1. Benza RL, et al. J Heart Lung Transplant. 2015;34:356-61. 2. Kylhammar D, et al. Eur Heart J 2017; ehx257.

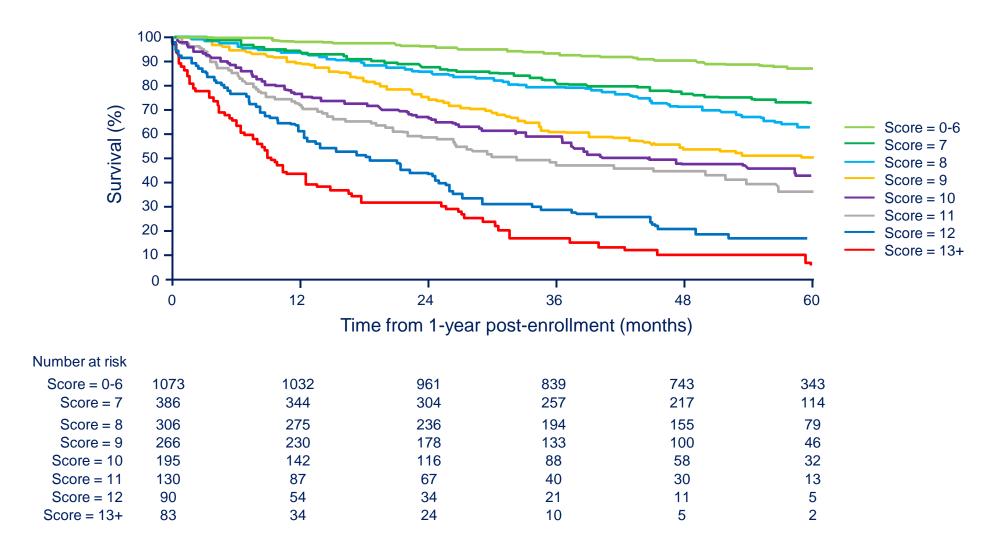

3. Hoeper MM, et al. Eur Respir J 2017; 50:1700740.


4. Boucly A, et al. Eur Respir J 2017; 50:1700889.

REVEAL¹

REVEAL Registry: Risk score

- Multivariable model coefficients replaced with integer values to create calculator¹
- Risk calculator allows easy tabulation of risk score¹
- REVEAL 2.0 can predict survival and clinical worsening²



1. Benza R, et al. CHEST 2012; 141:354-62;

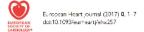
2. Benza R, et al. Chest 2019 [Epub ahead of print].

Survival according to REVEAL 2.0 score

REVEAL PAH risk score considerations

- Large number of variables (-)
- Incorporates non-modifiable variables (-)
- Weighted variables (+)
- Validated across many different patient groups (+)
- Highly discriminatory for both survival and clinical worsening (+)
- Works in both incident and prevalent cases (+)
- External validation (French PAH Registry cohort) (+)

2015 ESC/ERS Guidelines – Risk stratification in PAH


Clinical Evaluation

Exercise Capacity

Right Ventricular Function

Determinants of	Estimated 1-year mortality					
prognosis	Low risk < 5%	Intermediate risk 5-10%	High risk > 10%			
Clinical signs of right heart failure	Absent	Absent	Present			
Progression of symptoms	No	Slow	Rapid			
Syncope	No	Occasional syncope	Repeated syncope			
FC	I, II	Ш	IV			
6MWD	> 440 m	165 - 440 m	< 165 m			
СРЕТ	Peak VO ₂ > 15 ml/min/kg (> 65% pred.) VE/VCO ₂ slope < 36	Peak VO ₂ 11 - 15 ml/min/kg (35-65% pred.) VE/VCO ₂ slope 36 - 44.9	Peak VO ₂ < 11ml/min/kg (< 35% pred.) VE/VCO ₂ slope ≥ 45			
NT-proBNP plasma levels	BNP < 50 ng/l NT-proBNP < 300 ng/l	BNP 50-300 ng/l NT-proBNP 300-1400 ng/l	BNP > 300 ng/l NT-proBNP > 1400 ng/l			
Imaging (echo, CMR)	RA area < 18 cm ² No pericardial effusion	RA area 18–26 cm ² No or minimal pericardial effusion	RA area > 26 cm² Pericardial effusion			
Hemodynamics	RAP < 8 mmHg CI ≥ 2.5 l/min/m² SvO ₂ > 65%	RAP 8–14 mmHg CI 2.0–2.4 l/min/m² SvO ₂ 60–65%	RAP > 14 mmHg Cl < 2.0 l/min/m² SvO ₂ < 60%			

Validation of ESC/ERS risk stratification for PAH

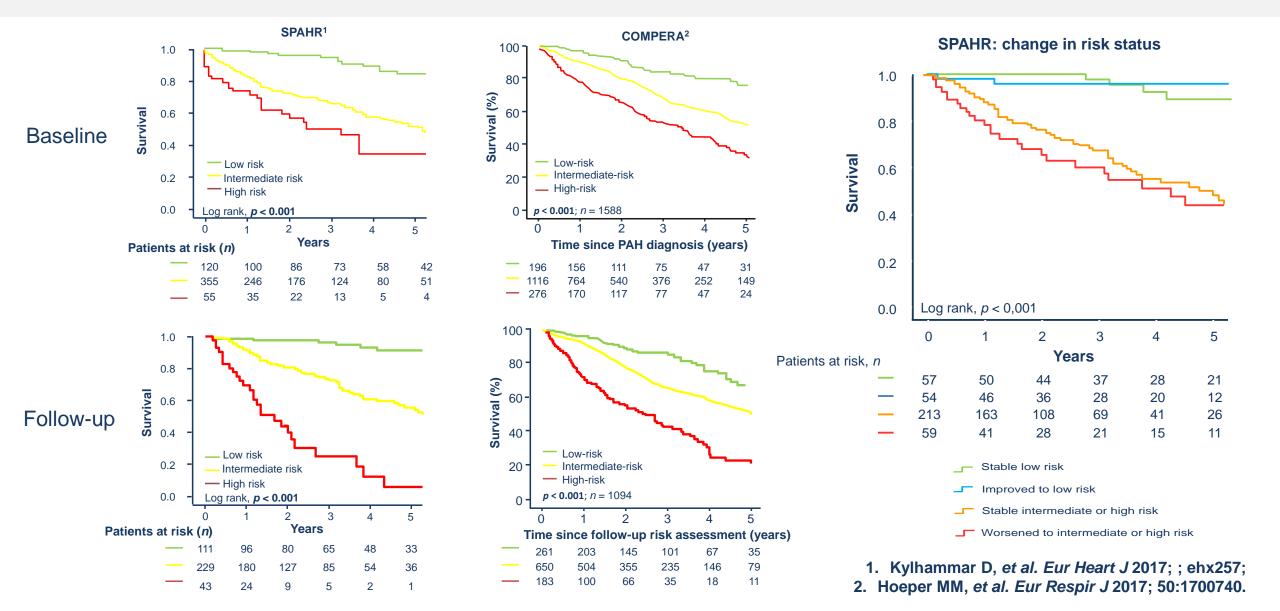
CLINICAL RESEARCH
Pulmonary circulation

A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension

David Kylhammar¹*, Barbro Kjellström², Clara Hjalmarsson³, Kjell Jansson⁴, Magnus Nisell⁵, Stefan Söderberg⁶, Gerhard Wikström⁷, and Göran Rådegran¹, on behalf of SveFPH and SPAHR

Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model

Marius M. Hoeper^{1,2}, Tilmann Kramer^{3,4}, Zixuan Pan⁵, Christina A. Eichstaedt⁵, Jens Spiesshoefer⁶, Nicola Benjamin⁵, Karen M. Olsson^{1,2}, Katrin Meyer¹, Carmine Dario Vizza ^{6,7}, Anton Vonk-Noordegraaf⁸, Oliver Distler⁹, Christian Opitz¹⁰, J. Simon R. Gibbs¹¹, Marion Delcroix¹², H. Ardeschir Ghofrani¹³, Doerte Huscher¹⁴, David Pittrow¹⁵, Stephan Rosenkranz^{3,4} and Ekkehard Grünig^{2,5}

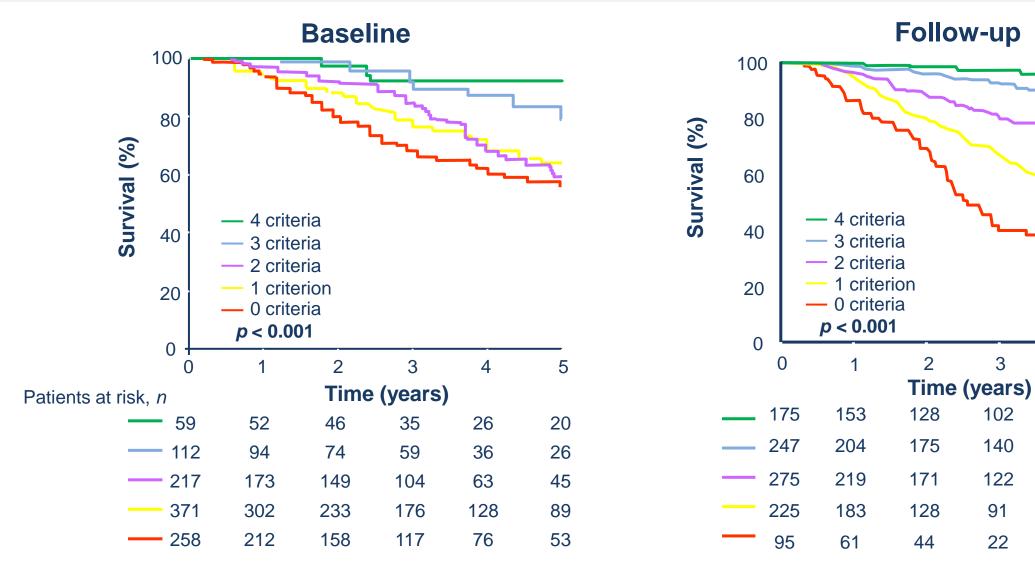

Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension

Athénaïs Boucly^{1,2,3}, Jason Weatherald ^{©2,3,4}, Laurent Savale^{1,2,3}, Xavier Jaïs^{1,2,3}, Vincent Cottin ^{©5}, Grégoire Prevot⁶, François Picard⁷, Pascal de Groote⁸, Mitja Jevnikar^{1,2,3}, Emmanuel Bergot⁹, Ari Chaouat^{10,11}, Céline Chabanne¹², Arnaud Bourdin¹³, Florence Parent^{1,2,3}, David Montani ^{©1,2,3}, Gérald Simonneau^{1,2,3}, Marc Humbert ^{©1,2,3} and Olivier Sitbon^{1,2,3}

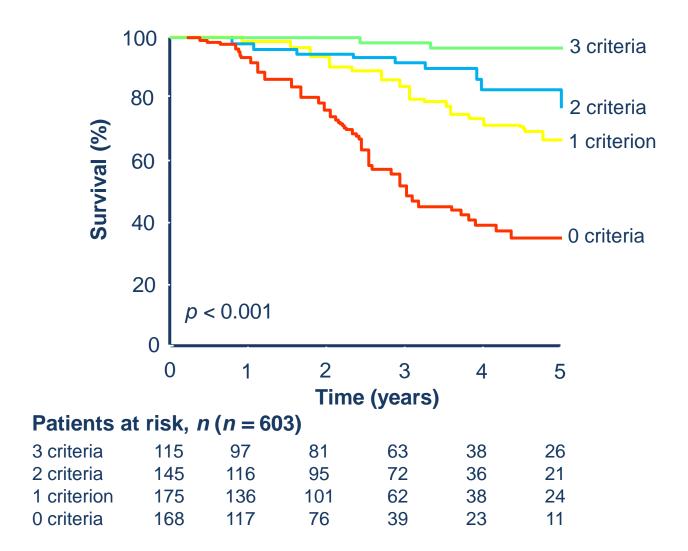
Kylhammar (8 variables)	Hoeper (6 variables)	Boucly (4 or 3 variables)
n = 530 PAH (2008-2016)	n = 1588 PAH (2009-2016)	n = 1017 IPAH (2006-2016)
WHO 6MWD BNP RA area Pericardial effusion RAP CI SvO ₂	WHO 6MWD BNP RAP CI SvO ₂	WHO 6MWD RAP CI WHO 6MWD BNP
Sum of grades (1 low-3 high) /number available variables	Sum of grades (1 low-3 high) /number available variables	Number of low risk variables

Kylhammar D, et al. Eur Heart J 2017; ehx257; Hoeper MM, et al. Eur Respir J 2017; 50:1700740; Boucly A, et al. Eur Respir J 2017; 50:1700889.

Validation of ESC/ERS risk stratification in large registries



French Registry approach: association between the number low-risk criteria and survival

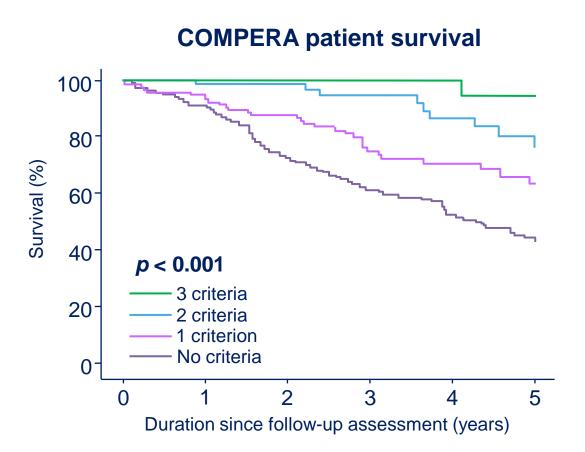

- Incident patients with idiopathic, heritable and drug-induced PAH between 2006-2016 were analysed
- The number of low-risk criteria present at diagnosis and at first re-evaluation were assessed:
 - 1. WHO/NYHA functional class I or II
 - 2. 6-minute walk distance (6MWD) > 440m
 - 3. right atrial pressure < 8 mmHg
 - 4. cardiac index ≥ 2.5 L/min/m²
- 1017 / 1591 patients having all parameters available at both baseline and first re-evaluation

Determinants of prognosis	Low risk < 5%	
Clinical signs of right heart failure	Absent	
Progression of symptoms	No	
Syncope	No	4
FC	I, II	
6MWD	> 440 m	
CPET	Peak $VO_2 > 15$ ml/min/kg (> 65% pred.) VE/VCO_2 slope < 36	
NT-proBNP plasma levels	BNP < 50 ng/l NT-proBNP < 300 ng/l	
Imaging (echo, CMR)	RA area < 18 cm ² No pericardial effusion	4
Hemodynamics	RAP < 8 mmHg CI ≥ 2.5 l/min/m² SvO ₂ > 65%	

Achievement of multiple low risk criteria is associated with improved long-term outcomes

Number of <u>non-invasive low-risk</u> criteria at follow-up is also associated with prognosis

Non-invasive low-risk criteria:


NYHA FC I-II 6MWD >440 m BNP <50 ng/L or NT-proBNP <300 ng/L

Patients with all 3 non-invasive low-risk criteria (≈ 20%) had a 2-, 3- and 5-year survival of 100%, 99% and 97%, respectively

→ Invasive hemodynamic risk assessment provides important prognostic information in patients who do not achieve 3 non-invasive low-risk criteria

When the French registry risk score was applied to the COMPERA population...

...Comparable survival rates for COMPERA and French Registry patients were observed

	Number of low-risk criteria at follow up	1 Year survival estimate	3 Year survival estimate	5 Year survival estimate
4	3 low-risk criteria	100%	100%	95%
PER	2 low-risk criteria	99%	95%	76%
COMPERA	1 low-risk criterion	93%	75%	64%
Ö	0 low-risk criteria	90%	61%	43%
	3 low-risk criteria	100%	97%	96%
French	2 low-risk criteria	98%	90%	77%
Fre	1 low-risk criterion	98%	83%	66%
	0 low-risk criteria	94%	52%	35%

Conclusions

- Registries are unique tools allowing a better understanding of PAH epidemiology
- PAH registries have been very useful (PAH incidence, prevalence, etiologies, patients' characteristics, survival, ...)
- Risk stratification and treatment goals can be tested in registries

Guidelines for Registries Implementation

The process of registry development

Keep the registry simple

 A database should include the minimal number of variables that are necessary to answer the questions that we are asking to ourselves (the simpler the registry, the less prone to errors)

- Adequate selection of participating centers

 One of the major criticisms of some registries is that some participating centres had a very low recruitment rate, thus reflecting high variability with regards the experience with the diagnosis and management of the disease.