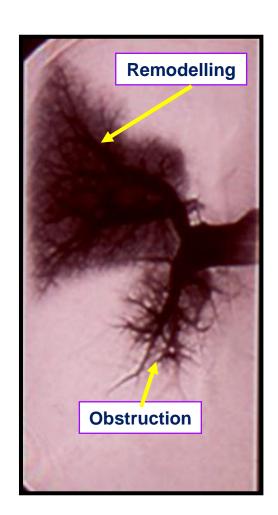


Πνευμονική Υπέρταση: τι άλλαξε στο 6° Παγκόσμιο Συμπόσιο Πνευμονικής Υπέρτασης: στη θεραπεία της CTEPH

Γεωργία Γ. Πίτσιου Πνευμονολόγος- Εντατικολόγος Αναπληρώτρια Καθηγήτρια, Τμήμα Ιατρικής ΑΠΘ Γ.Ν. "Γ.Παπανικολάου"

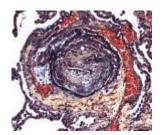
Conflict of interest The speaker has received

Honoraria for lectures and/or consultancy for Actelion, Bayer, ELPEN, GSK and MSD.

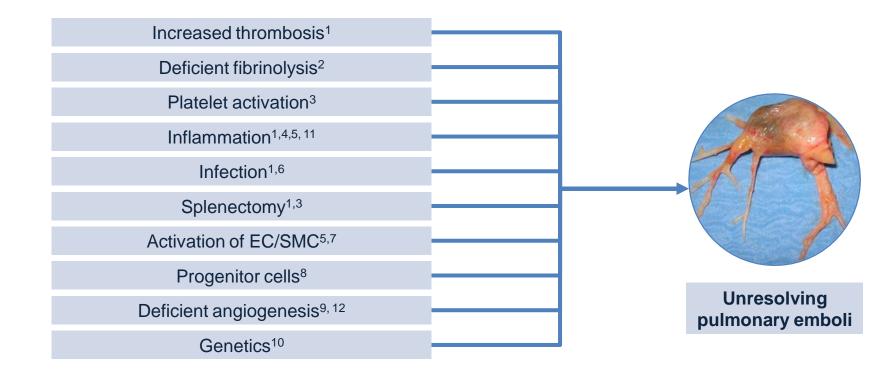

HULLINY 27/28 / MARCH 1, 8/78

Group	Description
	CTEPH & other pulmonary artery obstructions
Group 4	4.1 Chronic thromboembolic pulmonary hypertension (CTEPH)
	4.2 Other pulmonary artery obstructions (Table 6)

Table 6. Other pulmonary arte	ry obstructions							
4.2.1 Sarcoma (high-grade or intermediate-grade) or angiosarcoma								
4.2.2 Other malignant tumors	Renal carcinoma Uterine carcinoma Germ cell tumors of the testis Other tumors							
4.2.3 Non malignant tumors	Uterine leiomyoma							
4.2.4 Arteritis without connective tissue disease								
4.2.5 Congenital pulmonary artery stenoses								
4.2.6 Parasites	Hydatidosis							


Chronic thromboembolic pulmonary hypertension (CTEPH)

- CTEPH is symptomatic PH with persistent perfusion defects after 3-6 months of adequate anticoagulation
- CTEPH is a disease with
 - a mechanical component judged amenable to surgery (obstruction of elastic PA)
 - and variable small vessel disease in nonoccluded areas (remodelling in small muscular PA)



CTEPH PATHOPHYSIOLOGY

^{1.} Bonderman D et al. Thromb Haemost 2005;93:512–6. 2. Morris TA et al. Am J Resp Crit Care Med 2006;173:1270–5. 3. Frey MK et al. J Am Heart Assoc 2014;3:e000772. 4. Quarck R et al. J Am Coll Cardiol 2009;53:1211–8. 5. Wynants M et al. Eur Resp J 2012;40:886–94. 6. Bonderman D et al. Arterioscler Thomb Vasc Biol 2008;28:678–84. 7. Quarck R et al. Respir Res 2012;13:27. 8. Firth AL et al. Am J Physiol Cell Physiol 2010;298:C1217–25. 9. Alias S et al. Arterioscler Thromb Vasc Biol 2014;34:810–9. 10. Suntharalingam J et al. Eur Respir J 2008;31:736–41. 11. Zabini D et al. Eur Respir J 2014;44:951–62. 12. Quarck R et al. Eur Respir J 2015;46:431–43.

CTED incidence

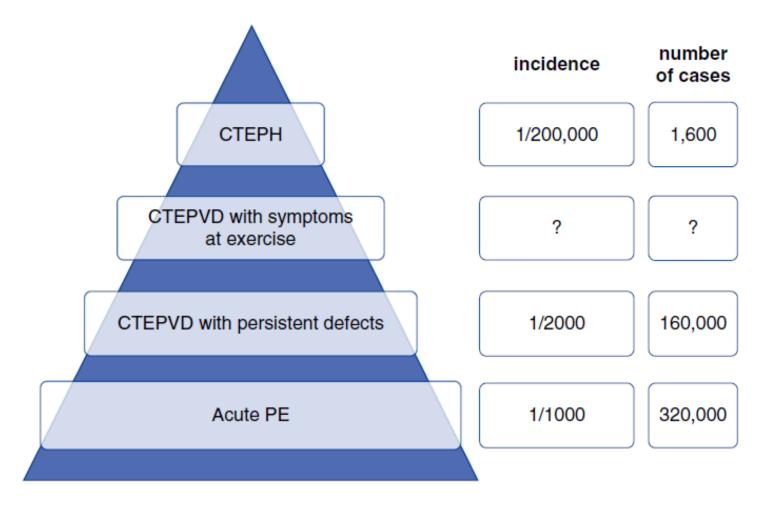


Figure 1. Estimates of the number of new patients with chronic thromboembolic pulmonary hypertension (CTEPH) and chronic thromboembolic pulmonary vascular disease (CTEPVD) per year in the United States. PE = pulmonary embolism.

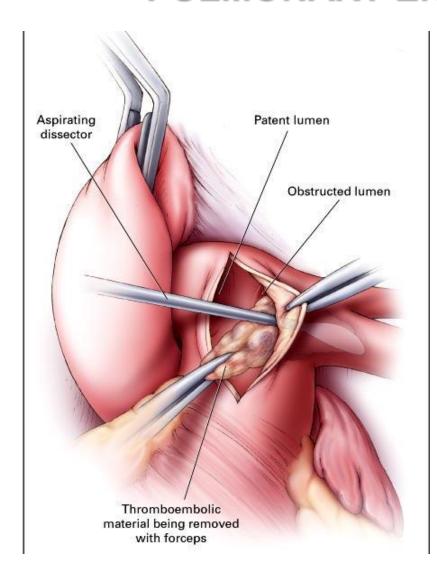
CTEPH-Chronic Thromboembolic Disease (CTED) definitions

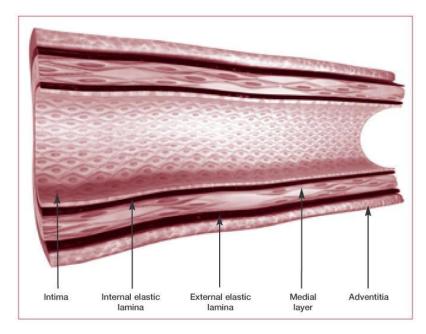
water to an accompany

TABLE 1 Chronic thromboembolic disease (CTED) compared with chronic thromboembolic pulmonary hypertension (CTEPH)

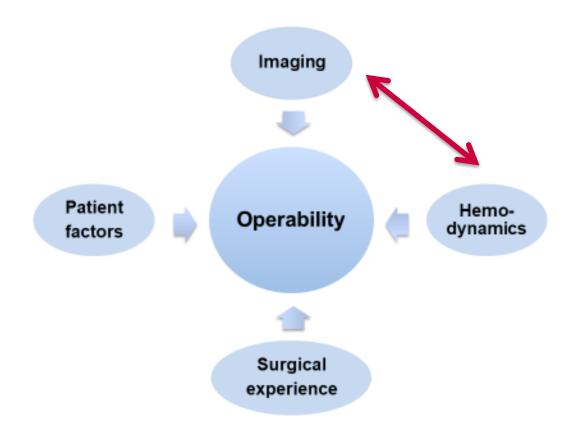
Diagnostic criteria	СТЕРН	CTED			
Symptoms	Exercise dyspnoea	Exercise dyspnoea			
PH	Present at rest	Absent at rest			
RHC at exercise		mPAP/C0 slope >3 mmHg·L $^{-1}$ ·min $^{-1}$			
V/Q scan	Any mismatched perfusion defect	Any mismatched perfusion defect			
Angiography (CTPA or DSA)	Typical findings of CTEPH	Typical findings of CTEPH			
CPET		Excluding ventilatory limitation, deconditioning			
TTE		Excluding left ventricular myocardial or valvular disease			
Anticoagulation	At least 3 months	At least 3 months			

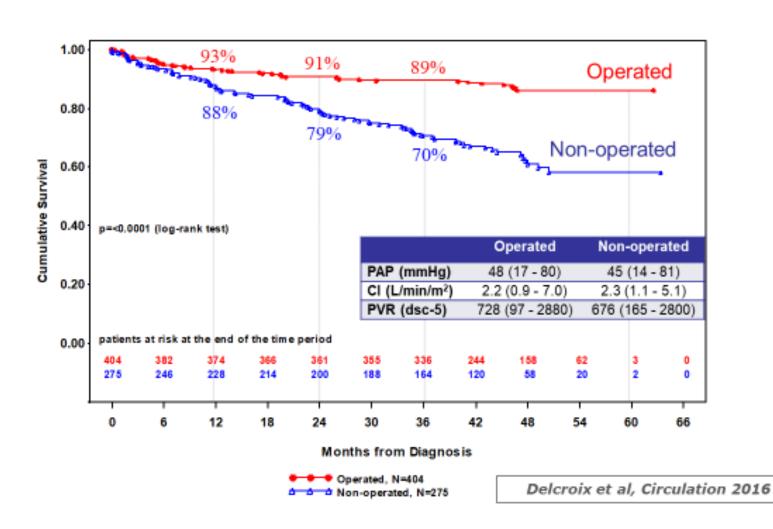
RHC: right heart catheterisation; V/Q: ventilation/perfusion; CTPA: computed tomography pulmonary angiogram; DSA: digital subtraction angiogram; CPET: cardiopulmonary exercise test; TTE: transthoracic echocardiogram; mPAP: mean pulmonary arterial pressure; CO: cardiac output.


CTEPH management


AND DESCRIPTION OF THE PARTY OF

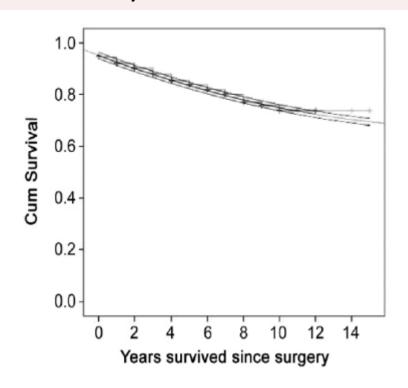
- Pulmonary endarterectomy
- Balloon Pulmonary Angioplasty
- PH-targeted medical therapy

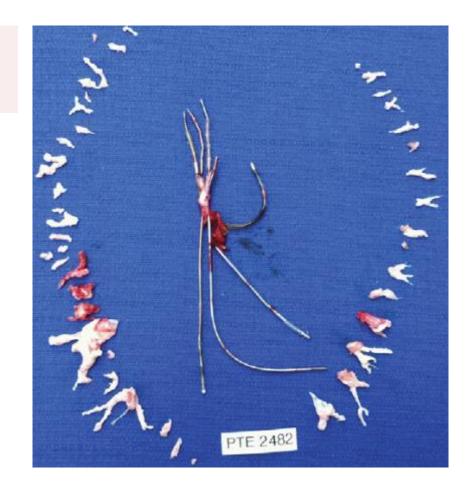

PULMONARY ENDARTERECTOMY

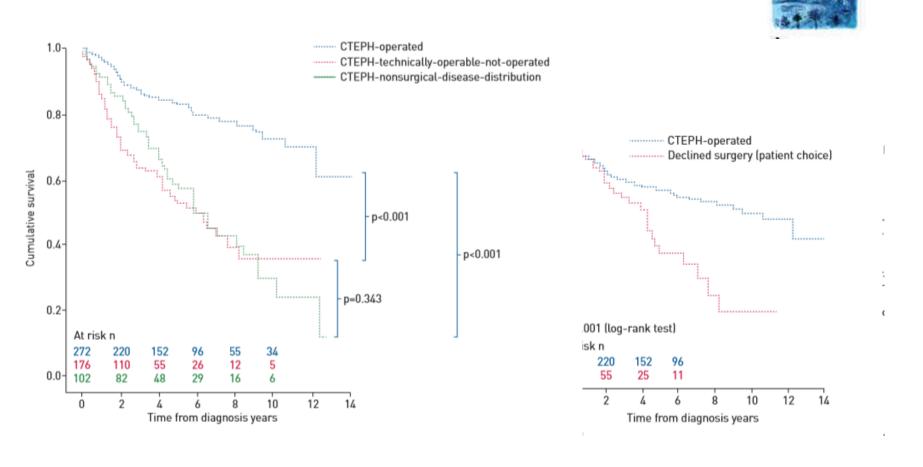


- Performed during deep hypothermic circulatory arrest
- 20 mins to complete each PA
- Removal of the intraluminal obstruction, intima and a portion of the medial layer of the pulmonary artery

FROM CTEPH DIAGNOSIS TO OPERABILITY




KM SURVIVAL ESTIMATES: OPERATED AND NON-OPERATED


Long term survival data

In-hospital mortality 2.2% 10-year-survival 75%

Survival by technical operability and patient choice

Quadery SR et al. ASPIRE registry, ERJ 2018

Benefit/risk assessment for PEA

not indications/contraindications

WATERLY STORY WHEEL T. BOR

TABLE 2 Favourable risk-benefit assessment for pulmonary endarterectomy

Characteristics Lower risk with predictable good long-term outcome Higher risk with less predictable long-term outcome (not contraindications)

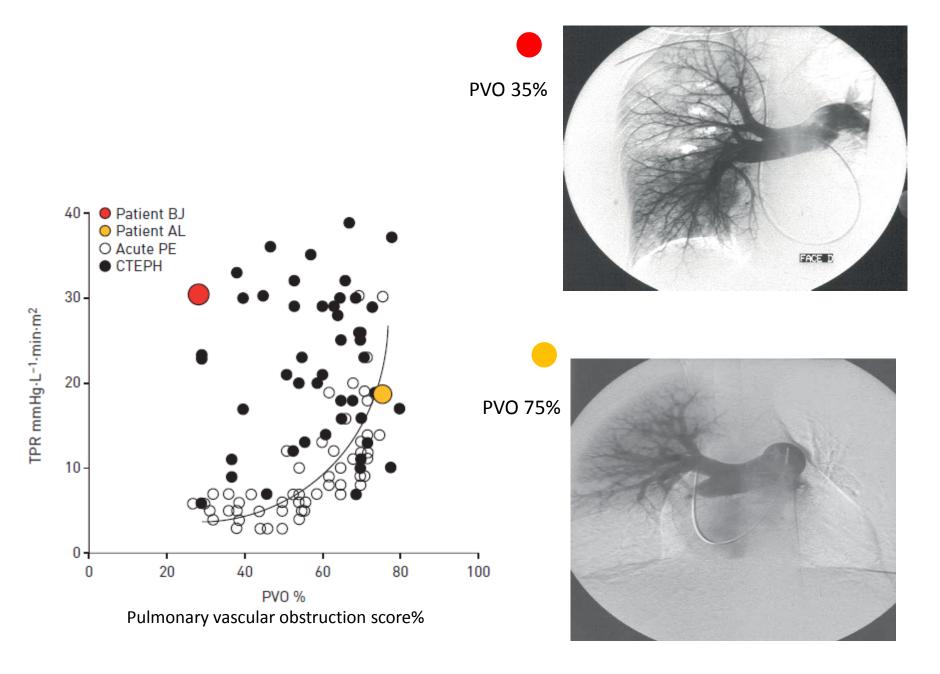
History
Examination
Comorbidity
Functional limitation
Imaging
Type of disease
Haemodynamics

History of DVT/PE

No signs of right heart failure

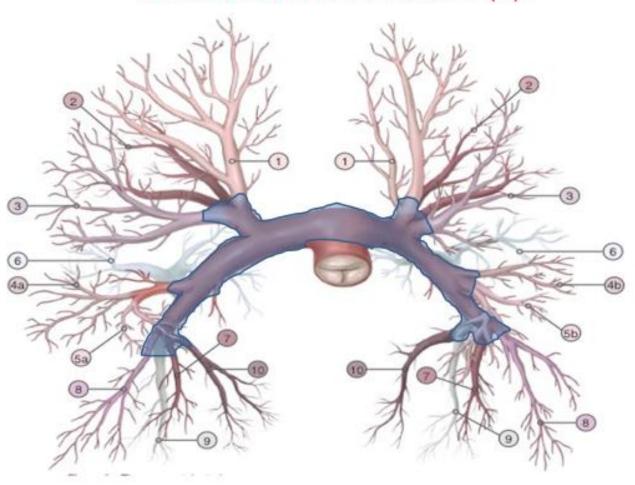
None

Functional class II or III


Clear disease concordant on all images

Bilateral lower lobe disease

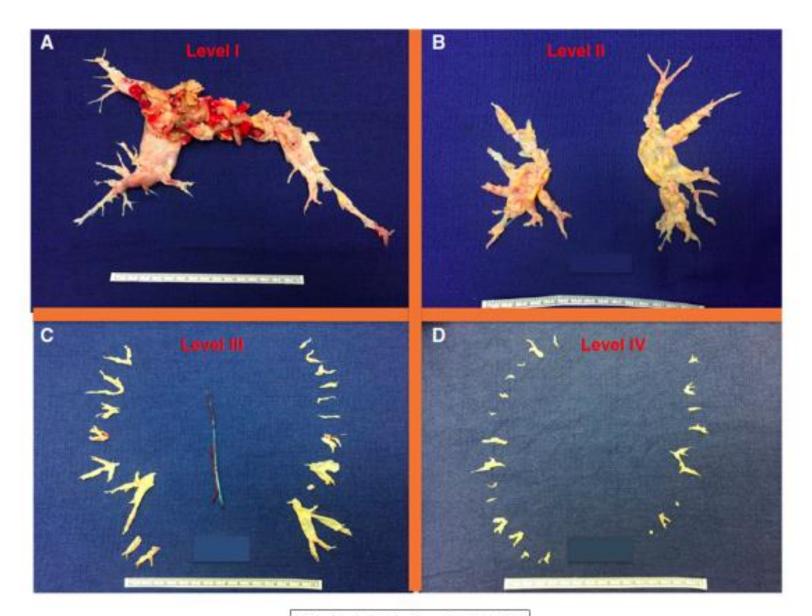
PVR <1000 dyn·s·cm⁻⁵, in proportion to site and number of obstructions on imaging; higher PA pulse pressure


No history of DVT/PE
Signs of right heart failure
Significant concomitant lung or left heart disease
Functional class IV
Inconsistency on imaging modalities
No disease appreciable in lower lobes
PVR >1200 dyn·s·cm⁻⁵, out of proportion to site and number of obstructions on imaging; higher PA diastolic pressure

DVT: deep vein thrombosis; PE: pulmonary embolism; PVR: pulmonary vascular resistance; PA: pulmonary artery.

Azarian R et al. J Nucl Med 1997; 38: 980–983

LIMITS OF OPERABILITY (?)


UCSD surgical classification

HARLING STORY WHEN I SEE

TABLE 3 University of California San Diego chronic thromboembolism (CTE) surgical classification

Surgical levels	Location of CTE
Level 0	No evidence of thromboembolic disease in either lung
Level I	CTE starting in the main pulmonary arteries
(Level IC)	(Complete occlusion of one main pulmonary artery with CTE)
Level II	CTE starting at the level of lobar arteries or in the main descending pulmonary arteries
Level III	CTE starting at the level of the segmental arteries
Level IV	CTE starting at the level of the subsegmental arteries
	-

Madani et al, Ann ATS 2016

Impact on bridging medical therapy in operable CTEPH

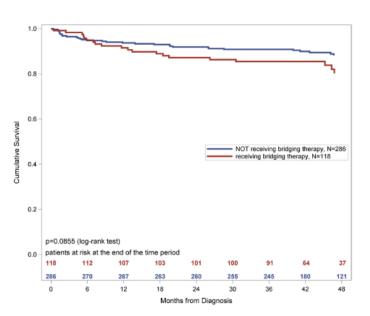
Registry: worse observed survival

Table 4. Independent Correlates of Mortality for Operated and Not-Operated Patients

		Operated (n=34	Not-Operated (n=219)			
Covariate	HR	95% CI	P Value	HR	95% CI	P Value
NYHA class III vs I-II				2.43	1.00-5.89	0.0489
NYHA class IV vs I-II	4.16	1.49-11.62	0.0065	4.76	1.76-12.88	0.0021
RAP	1.34	0.95-1.90	0.0992	1.50	1.20-1.88	0.0004
PAP	0.67	0.47-0.94	0.0226			
History of acute VTE	0.48	0.24-0.97	0.0413			
History of cancer	3.02	1.36-6.69	0.0065	2.15	1.18-3.94	0.0129
Coronary disease/myocardial infarction	-			1.81	1.00-3.28	0.0492
CHF or LV dysfunction	-			1.98	1.02-3.83	0.0440

Opposited to 24C)

All other complications


3.82 1.72–8.51 0.0010 - - -
Additional cardiac procedure

3.10 1.54–6.24 0.0015 - -
Cox multivariable analysis of operated and not-operated patients, separately. CHF indicates congestive heart failure; CI, confidence interval; COPD, chronic obstructive pulmonary disease; HR, hazard ratio; LV, left ventricle; NYHA, New York Heart Association; PAH, pulmonary arterial hypertension; PAP, pulmonary artery pressure; PH, pulmonary hypertension; PAP, right atrial pressure; and VTE, venous thromboembolism

0.0072

PAH-targeted therapy started at diagnos

Postoperative PH

Delcroix M et al. Circulation 2016

PEA bridging study: NCT0327357

Operable patients with high PVR, 1:1 with riociguat or placebo for 3 months Primary endpoint: change from baseline PVR

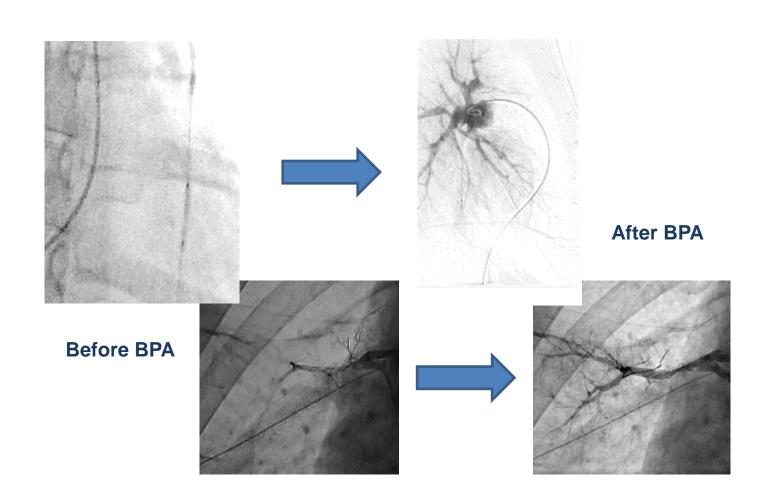
Impact of medical therapy before PEA in operable patients

- Retrospective analysis of CTEPH patients referred for PEA to UCSD (2005-2007)
- 31% of patients on PAH-targeted therapy

Significant delay for referral

	2	2005		006	2007	
	п	%	n	%	n	%
Group						
Control	141	80.11	107	68.15	97	62.99
PHT	35	19.89	50	31.85	57	37.01
Medication						
Bosentan	14	40.00	17	34.00	24	42.11
Sildenafil	14	40.00	31	62.00	40	70.18
Epoprostenol	7	20.00	7	14.00	5	8.77

	PHT Group (n=111)	Control Group (n=244)	P
Median age, y (IQR)	51 (39-62.5)	52 (37-64)	0.84
Sex, M/F	52/59	121/123	0.63
Median time to referral, mo (IQR)	8.9 (4–13)	4.4 (2.5–7)	< 0.01
Anticoagulation	110 (99.1)	240 (98.4)	0.89
Diuretic	65 (58.6)	114 (46.7)	0.04
Spironolactone	24 (21.6)	18 (7.4)	< 0.01
Digoxin	16 (14.4)	15 (6.1)	0.01
Dopamine	3 (2.7)	2 (0.8)	0.16


CTEPH management

Land the second control of

- Pulmonary endarterectomy
- Balloon Pulmonary Angioplasty
- PH-targeted medical therapy

Balloon Pulmonary Angioplasty in CTEPH

Balloon Pulmonary Angioplasty for Inoperable CTEPH^[a]

- BPA was first developed for treating PA congenital stenosis^[b]
- A first case series of 18 patients from the US was reported in 2001 with a treatment effect less than those obtained with PEA, and with a high rate of severe complication^[c]
- Over the last 10 years, several centers in Japan (Okayama, Osaka, Kobe, Tokyo, and others) have refined the BPA procedure leading to improvement in efficacy and safety of this treatment option for inoperable patients with CTEPH^[d]

Improving results with BPA

HUTLINY STORY WHEN Y, BOR

Y	Study	Year	Study location	Patients	Mean age (yrs)	Study duration (months)	Medical therapy before BPA	Effect in PVR	Lung injury	In- hospital mortality	Long-term outcomes
1	Feinstein et al.	2001	USA	18	51.8	36	0%	-23% (TPR)	61%	5.6%	89% at 34.2 months
	Mizoguchi et al.	2012	Japan	68	62.2	26	100%	-65%	60%	1.5%	97% at 2.2 yr
	Kataoka et al.	2012	Japan	29	62.3	6	100%	NR	53%	3.4%	NR
	Andreassen et al.	2013	Norway	20	60	51	10%	-33%	35%	10%	85% at 51 months
	Fukui et al.	2014	Japan	20	67	12	75%	-45%	0%	0%	NR
	Roik et al	2016	Poland	11	76	NR	54%	-48%	18%	0%	NR
	Ogo et al.	2017	Japan	80	68	12	61%	-57%	17%	0%	NR
	Ogawa et al.	2017	Japan	249	61.5	14	72%	-66%	35%	3%	94.5% at 2 year
	Aoki et al.	2017	Japan	77	65	60	96%	-64%	23%	0%	98.4% at 5 year
	Olsson et al.	2017	Germany	56	65	14	59% PDE5 inhibitor	-26%	9%	0%	NR
	Average			628 (total)	63.3	25.7	72.5	-55%	29%	1.8%	

Classification of BPA complications

During the procedure

Vascular injury¹ with/without hemoptysis

Wire perforation

Balloon over- dilatation

High pressure contrast injection

Vascular dissection

Allergic reaction to contrast

Adverse reaction to conscious sedation/local anesthesia

After the procedure

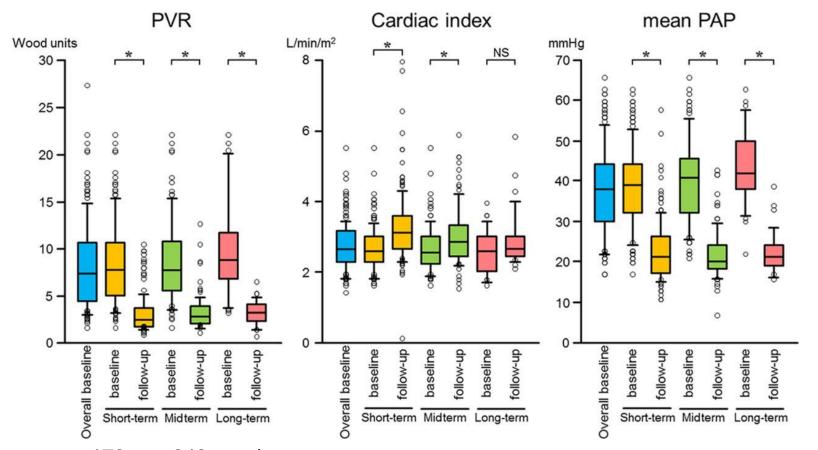
Lung injury² (radiographic opacity with/without hemoptysis, with/without hypoxemia)

Renal dysfunction

Access site problems

Signs of vascular injury: extravasation of contrast, hypoxemia, cough, tachycardia, increased pulmonary arterial pressure
Causes of lung injury: Vascular injury >> Reperfusion lung injury

Advances in BPA therapy


HARLING STORY WHEN I SIDE

	2013	2018		
Publications	3	166		
Sites	Japan	International		
Patient number	100	>1000		
BPA targets	Limited segments	All segments		
Procedural risk	High	Lower		
Short-term efficacy:				
Expert center	Intermediate	High		
Non-expert center	-	Intermediate		
Long-term outcome	_	<5 years		

Long-Term Outcomes After Percutaneous Transluminal Pulmonary Angioplasty for Chronic Thromboembolic Pulmonary Hypertension

Takumi Inami, MD* Masaharu Kataoka, MD* Ryoji Yanagisawa, MD Haruhisa Ishiguro, MD Nobuhiko Shimura, MD Keiichi Fukuda, MD Hideaki Yoshino, MD Toru Satoh, MD

170 pts, 649 sessions

Long-Term Outcomes After Percutaneous Transluminal Pulmonary Angioplasty for Chronic Thromboembolic Pulmonary Hypertension

CTEPH management

and the second second

- Pulmonary endarterectomy
- Balloon Pulmonary Angioplasty
- PH-targeted medical therapy

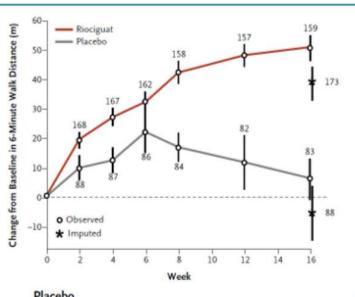

Randomized controlled trials (RCTs) in CTEPH

TABLE 5 Pulmonary hypertension-targeted medical therapy randomised controlled trials in chronic thromboembolic pulmonary hypertension

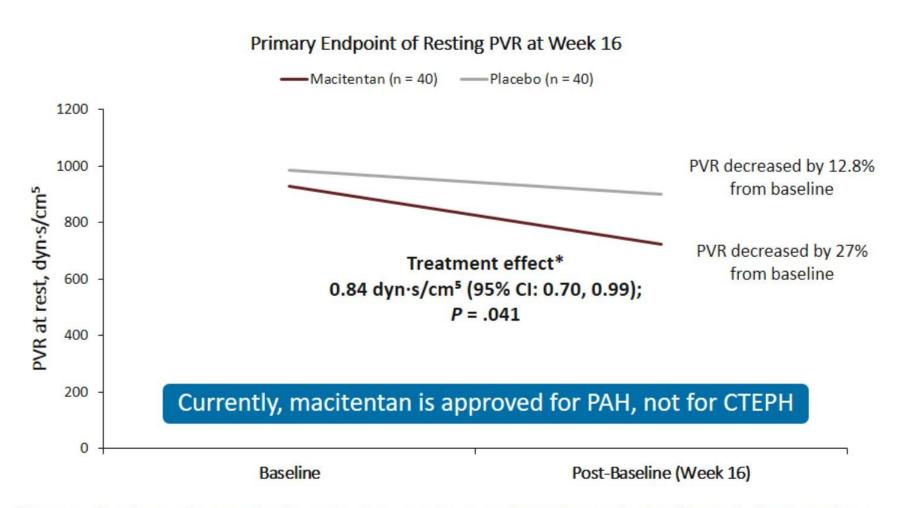
Trial [ref.]	Study drug	Duration weeks	Subjects n	NYHA FC	6MWD m	6MWD effect m	PVR baseline dyn∙s∙cm ⁻⁵	PVR effect %
BENEFIT [73]	Bosentan	16	157	II-IV	342±84	+2 ^{NS}	783 (95% CI 703-861)	-24
CHEST-1 [55]	Riociguat	16	261	II-IV	347±80	+46	787±422	-31
MERIT-1 [74]	Macitentan	16 (24#)	80	II-IV	352±81	+34	957±435	-16

Data are presented as n or mean±sp, unless otherwise stated. NYHA FC: New York Heart Association Functional Class; 6MWD: 6-min walk distance; PVR: pulmonary vascular resistance; Ns: non-significant. All three trials had an adjudication process for operability. #: 6MWD measured at 24 weeks.

CHEST-1 Riociguat for the Treatment of CTEPH

Riociguat
approved for the
treatment of
inoperable
CTEPH or
residual PH after
PEA

D Value


Piociaust

End Point		Placebo			Riociguat			
	No. of Patients	Baseline	Change	No. of Patients	Baseline	Change		
Secondary end points								
Pulmonary vascular resis- tance (dyn·sec·cm ⁻⁵)	82	779±401	23±274	151	791±432	-226±248	<0.001	
NT-proBNP (pg/ml)	73	1706±2567	76±1447	150	1508±2338	-291±1717	<0.001	
WHO functional class	87	0 patients in class I, 25 (29%) in class II, 60 (69%) in class III, 2 (2%) in class IV	13 patients (15%) moved to lower class (indicating improvement), 68 (78%) stayed in same class, 6 (7%) moved to higher class	173	3 patients (2%) in class I, 55 (32%) in class II, 107 (62%) in class III, 8 (5%) in class IV	57 patients (33%) moved to lower class (indicating improvement), 107 (62%) stayed in same class, 9 (5%) moved to higher class	0.003	

Ghofrani HA, et al. N Engl J Med. 2013;369:319-329.

End Point

MERIT-1 (Phase 2 Double-Blind Study) Macitentan in 80 Patients With Inoperable CTEPH

^{*}Expressed as the macitentan:placebo ratio of geometric means (95% CI) was calculated by analysis of covariance on the log transformed week 16 value.

Ghofrani HA, et al. Lancet Respir Med. 2017;5:785-794.

Effects of PH drug therapy on exercise capacity and hemodynamics (RCT) combination therapy

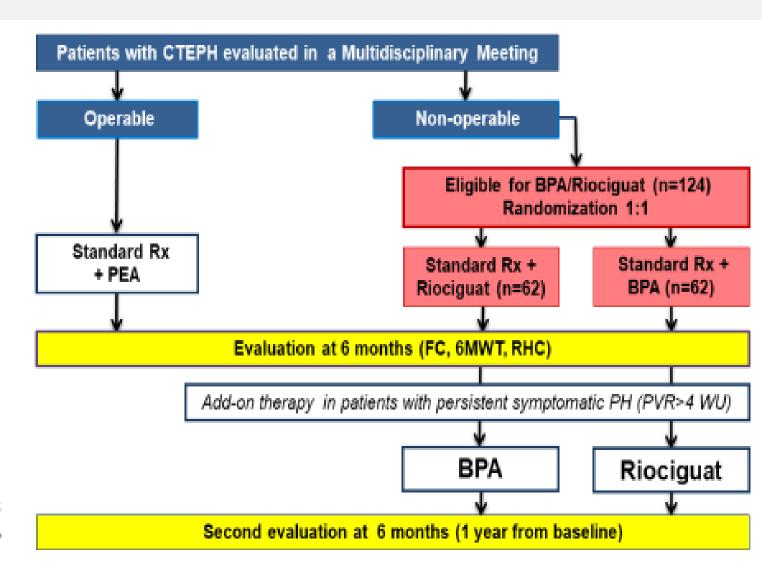
man and the second of the second of the second

Study drug (author year)	Duration months	n	NYHA class	6MWD m mean±SD	Effect meters	PVR dyn.s.cm- ⁵	Effect % PVR
Macitentan (Ghofrani 2017)	4 (6\$)	80	II - IV	352 ± 81	34	957 ± 435	-16
PDE5 inhib plus Macitentan		49			32		-16

Role of medical therapy

Current recommendations

NUTLINY STORY VALUE IN SIDE



CTEPH subgroups	Recommendations
Technical inoperable	Consider medical therapy* (RCT 1,2)
Persistent/Recurrent	Consider medical therapy* (RCT 1)
Refusing surgery	No data
Medically inoperable	No data
Bridge to PEA	Little data, RCT pending
Bridge to BPA	No RCT data
CTED	No data
All	Anticoagulation lifelong. No RCT

¹ Ghofrani et al., NEJM 2013

² Ghofrani et al. Lancet Respir Med 2017

RACE: Study design

Standard Rx: VKA±diuretics±onygen; PEA= pulmonary endarterectomy; BPA= balloon pulmonary angioplasty

Persistent / recurrent PH following PEA

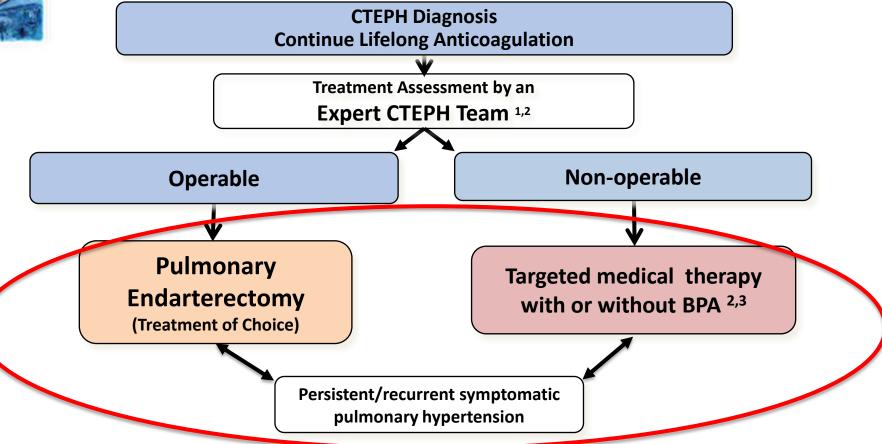
- Due to incomplete resection, distal vasculopathy, inaccessible lesions, or reocclusion
- Most important cause of postoperative morbidity and mortality
- No consensus on the definition

Reference	N	Criteria	Prevalence
Mayer E, J Thorac Cardiovasc Surg 2011	386	mPAP >25 mmHg end ICU	17%
Freed DH, J Thorac Cardiovasc Surg 2011	314	mPAP >30 mmHg at 3 mo	31%
Madani MM, Ann Thorac Surg 2012	500	PVR >500 dyne.s.cm ⁻⁵ end ICU	6%
Skoro-Sayer N, Circulation 2009	103	PVR >550 dyne.s.cm ⁻⁵ end ICU	14%
Corsico AG, Am J Respir Crit Care Med 2008	157	PVR >500 dyne.s.cm ⁻⁵ at 4y	24%

Potential implications for follow-up after PEA

• 51% of pts have mPAP≥25mmHg when measured by RHC at 3 to 6 months post-PEA

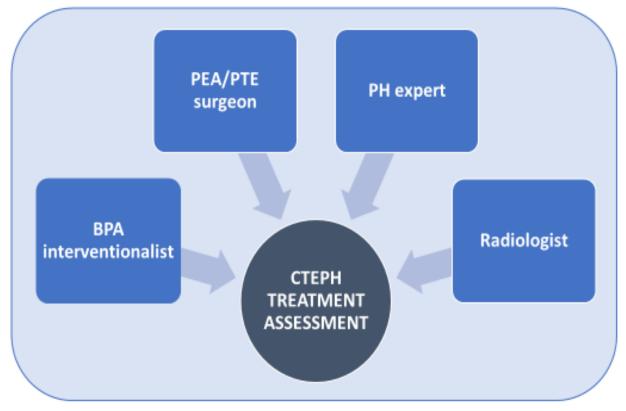
3-6 months after PEA surgery	Therapeutic decision
Haemodynamics normalized	No additional therapy needed (risk of recurrent PH \approx 1%)
Asymptomatic, mild residual PH after 3-6 months (PAPm <30 mmHg; PVR <425 dyn)	Probably no additional treatment needed
Asymptomatic, moderate-to-severe residual PH (PAPm ≥30 mmHg, PVR ≥425 dyn)	Consider medical therapy, balloon pulmonary angioplasty
Symptomatic, any degree of residual PH	Consider medical therapy, balloon pulmonary angioplasty



Recommendation

- Long term follow-up is important
- Consider treatment reassessment (medical/BPA/redo PEA)
 if symptomatic II-IV and
 mPAP≥25mmHg, PVR≥300dyn.s.cm⁻⁵ at >6months post PEA

¹ Multidisciplinary: PEA/PTE surgeon, PH expert, BPA interventionalist, and radiologist

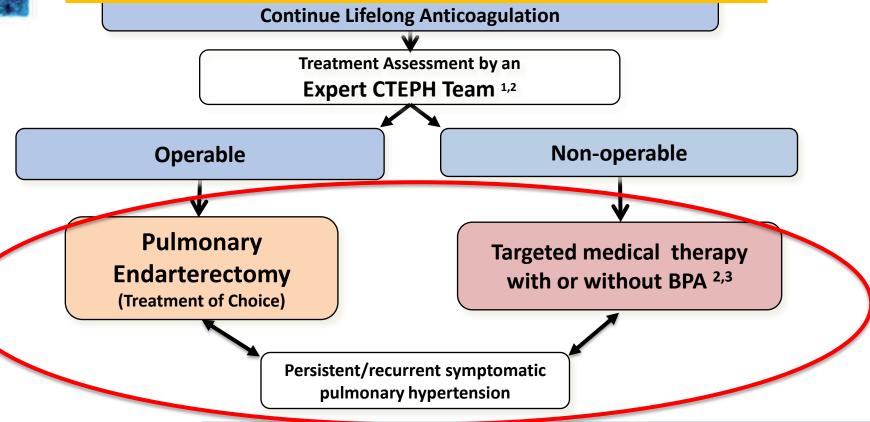

² Expert center defined: > 50 PEA/PTE, > 100 BPA sessions per year

³ BPA without medical therapy can be considered in selected cases

All CTEPH patients should be assessed wsPH by a multidisciplinary team

Definition of expert surgical centre

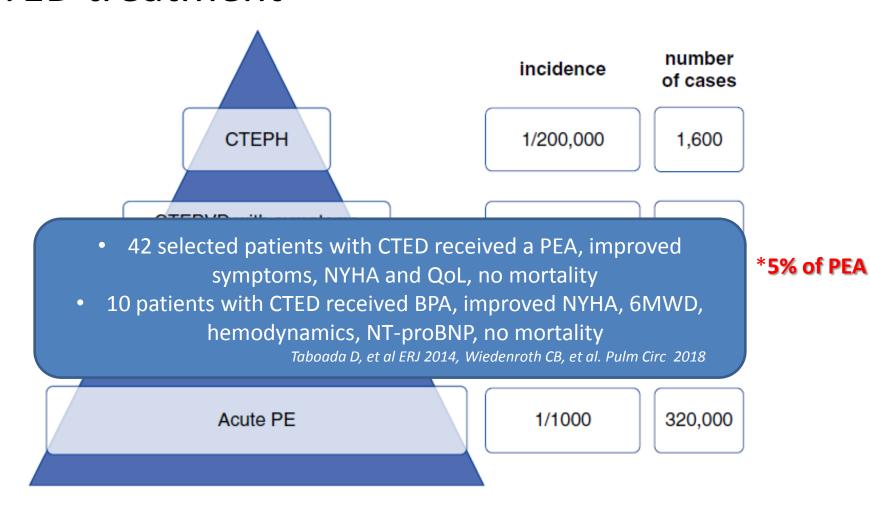
Nach and Street Challen 1 and



- surgical mortality (<5%)
- surgical volume (more than 50 PEAs per year)
- ability to perform segmental endarterectomy

**evaluate and offer any/all established treatment modalities according to individual need

Also valid for CTED management?



¹ Multidisciplinary: PEA/PTE surgeon, PH expert, BPA interventionalist, and radiologist

² Expert center defined: > 50 PEA/PTE, > 100 BPA sessions per year

³ BPA without medical therapy can be considered in selected cases

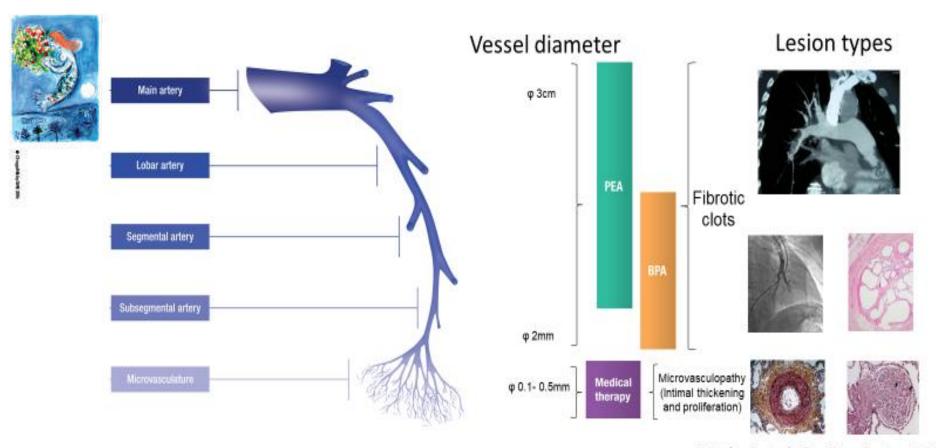

CTED treatment

Figure 1. Estimates of the number of new patients with chronic thromboembolic pulmonary hypertension (CTEPH) and chronic thromboembolic pulmonary vascular disease (CTEPVD) per year in the United States. PE = pulmonary embolism.

PARTITION / SARES T. SIZE

Madani et al, Eur Respir Rev 2017

Key-points in CTEPH treatment

- Evidence for excellent long term survival following PEA surgery
- Operability is subjective, but is a key decision as PEA remains the recommended treatment
- Increased evidence for efficacy and reproducibility of BPA with reduction in complications in expert centres
- Riociguat approved for inoperable patients and RCT evidence for benefit of combination therapy with PDE5-i and macitentan
- Some patients will have residual PH, even after effective surgery, and multimodality therapy will be the future of CTEPH treatment

