Πνευμονική Υπέρταση σε Χρόνιες χρόνιες Αποφρακτικές Πνευμονοπάθειες

Ι. Μητρούσκα Διακλινικό Ιατρείο Πνευμονικής Υπέρτασης ΠΑΓΝΗ Κρήτη

1 PAH

- 1.1 Idiopathic PAH
- 1.2 Heritable PAH
- 1.3 Drug- and toxin-induced PAH (table 3)
- 1.4 PAH associated with:
 - 1.4.1 Connective tissue disease
 - 1.4.2 HIV infection
 - 1.4.3 Portal hypertension
 - 1.4.4 Congenital heart disease
 - 1.4.5 Schistosomiasis
- 1.5 PAH long-term responders to calcium channel blockers (table 4)
- 1.6 PAH with overt features of venous/capillaries (PVOD/PCH) involvement (table 5)
- 1.7 Persistent PH of the newborn syndrome

2 PH due to left heart disease

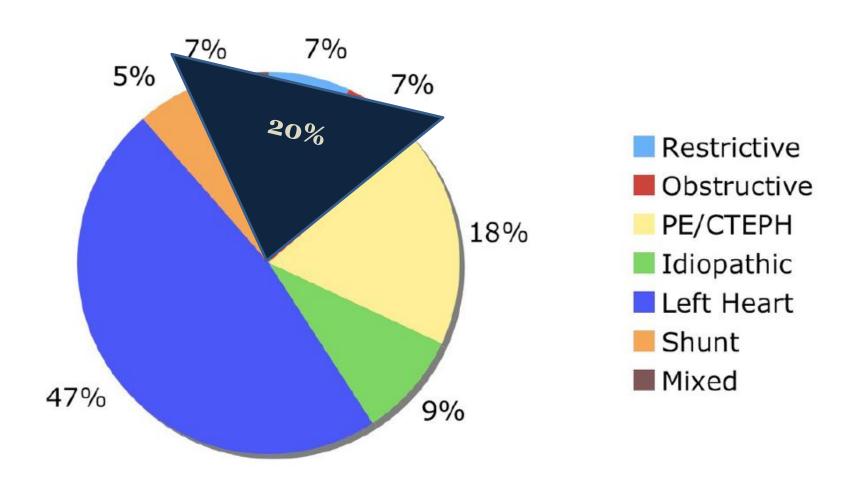
- 2.1 PH due to heart failure with preserved LVEF
- 2.2 PH due to heart failure with reduced LVEF
- 2.3 Valvular heart disease
- 2.4 Congenital/acquired cardiovascular conditions leading to post-capillary PH

3 PH due to lung diseases and/or hypoxia

- 3.1 Obstructive lung disease
- 3.2 Restrictive lung disease
- 3.3 Other lung disease with mixed restrictive/obstructive pattern
- 3.4 Hypoxia without lung disease
- 3.5 Developmental lung disorders

4 PH due to pulmonary artery obstructions (table 6)

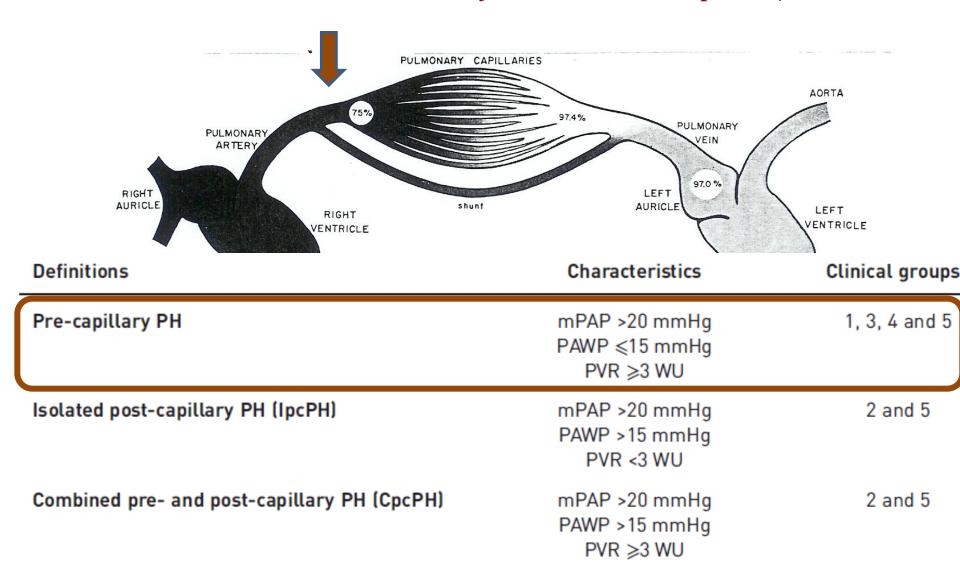
- 4.1 Chronic thromboembolic PH
- 4.2 Other pulmonary artery obstructions


5 PH with unclear and/or multifactorial mechanisms (table 7)

- 5.1 Haematological disorders
- 5.2 Systemic and metabolic disorders
- 5.3 Others
- 5.4 Complex congenital heart disease

Updated clinical classification of pulmonary hypertension (PH)

Simonneau G, Eur Respir J 12/2018

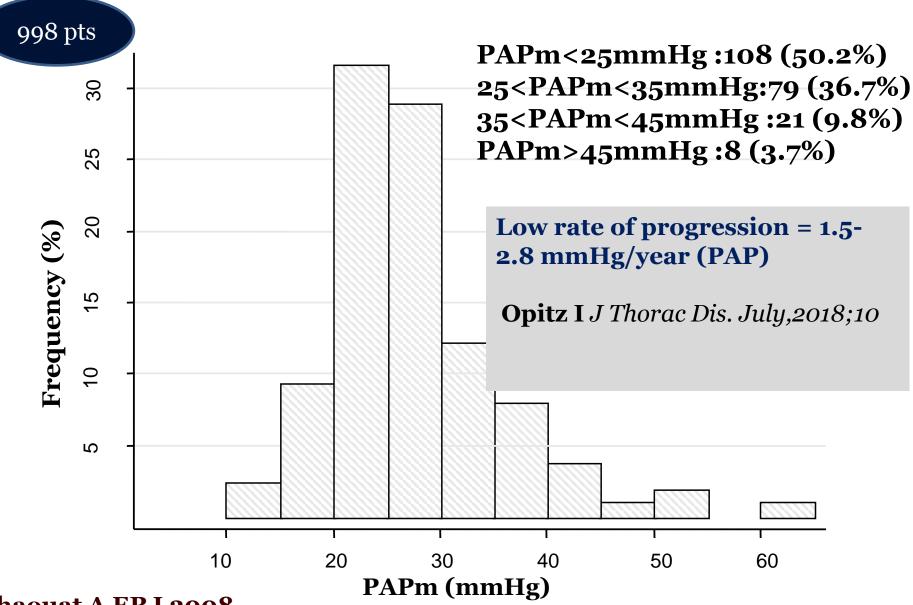

Κατανομή Πνευμονικής Υπέρτασης

Haemodynamic definitions of pulmonary hypertension (PH)

Proceedings of the 6th World Symposium on Pulmonary Hypertension

Simonneau G, Montani D, Celermajer DS, et al. Eur Respir J 12/2018

Prevalence 20-91%


GOLD stage IV: 90% have mPAP >20 mmHg, most ranging between 20 and 35 mmHg.

Prevalence and predictors associated with severe pulmonary hypertension in COPD

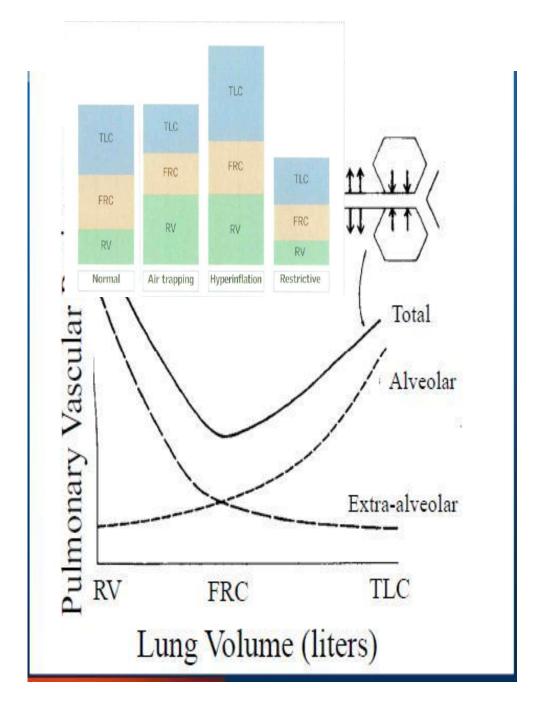
The results showed that there is an independent correlation between:
hypoxia, hypopnea and compensatory metabolic alkalosis,
polycythemia,
left ventricular dysfunction,
emaciation, and cachectic with severe pulmonary hypertension.

The prevalence of severe PH in these patients was 13.7%.

Distribution of PAPm

Chaouat A ERJ 2008
Thabut, Chest 2005; 127: 1531

Pathophysiology


Singh I The American J of Med 2016

Passive Factors Influencing Pulmonary Vascular Resistance

Passive Factors	Effect on PVR	Mechanism of Increased PVR				
Increased lung volume (above FRC)	Increases	Lengthening and compression of alveolar vessels				
Decreased lung volume (below FRC)	Increases	Compression of extra-alveolar vessels				
Increased pulmonary arterial pressure Increased left atrial pressure Increased pulmonary blood volume Increased cardiac output	Decreases	Recruitment and distension of previously underperfused vessels				
Gravity/body position	Decreases in gravity-dependent regions of the lungs	Hydrostatic effects leading to recruitment and distension of previously underperfused vessels				
Increased blood viscosity	Increases	Viscosity directly increases resistance				
Positive-pressure ventilation	Increases	Increased alveolar pressure with compression and lengthening of alveolar vessels Increased intrapleural pressure with compression of extra-alveolar vessels Reduces venous return resulting in decreased pulmonary blood flow and de-recruitment				

PVR Increases at Lung Volumes Below and Above FRC PVR Lung Volume Kinsella JP, 2003

Pulmonary Vascular Resistance = Pulmonary Driving Pressure/ Cardiac Output

Factors contributing to elevation in PVR in COPD

Contributing Factors	Consequence					
Expiratory airflow obstruction	Alveolar hyperinflation					
Chronic hypoxia LL-genotype polymorphism of 5-HT Increased expression of ADORA2B Proliferation of bone marrow EPCs Cigarette smoking injury Airway and vascular wall inflammation	Pulmonary vascular remodeling					
Hypoxia and acidosis	Reflexive pulmonary vascular constriction					
Dalum thomic						
Polvcvthemia	Increased blood viscosity					
ADORA2B = adenosine A2B receptor; EPC = endothelial progenitor cell: 5-HT = serotonin						

Active Factors that Increase TVR

Active Factors that Decrease PVR

Neural factors:

- Sympathetic nervous system stimulation
- Sympathomimetics: norepinephrine, epinephrine, and alpha-agonists

Neural factors:

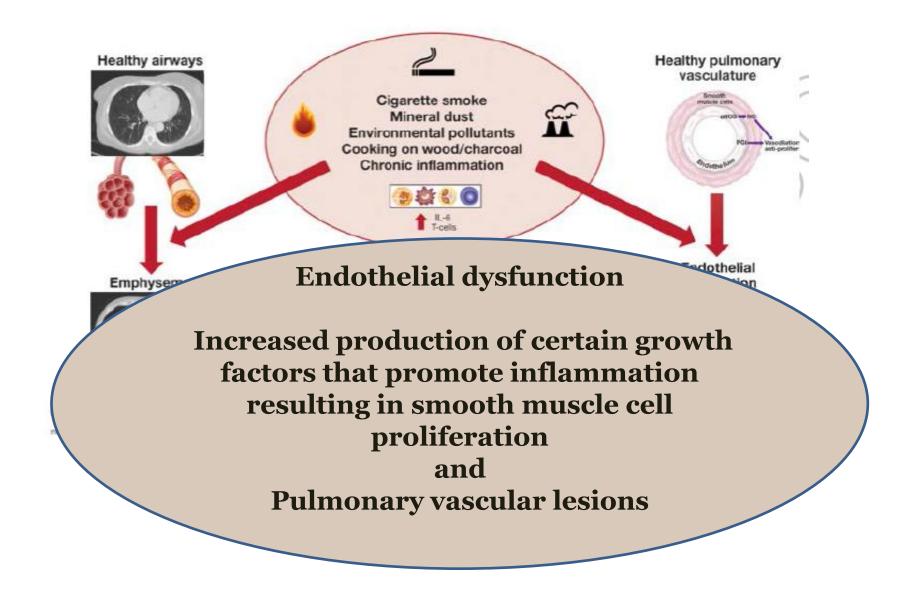
- Parasympathetic nervous system stimulation
- Parasympathomimetics: acetylcholine
- Sympathomimetic: beta-2-agonists

Gaseous factors:

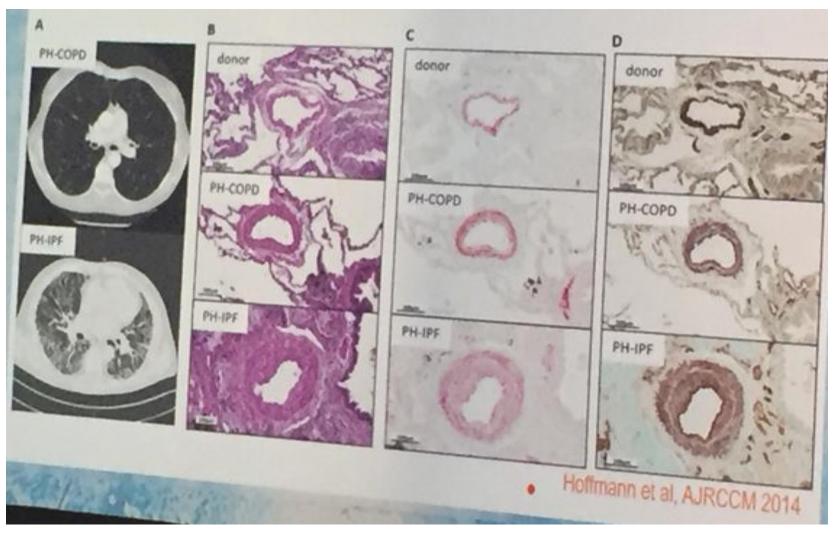
 Alveolar hypoxia and hypercapnia

Gaseous factor:

litric oxide

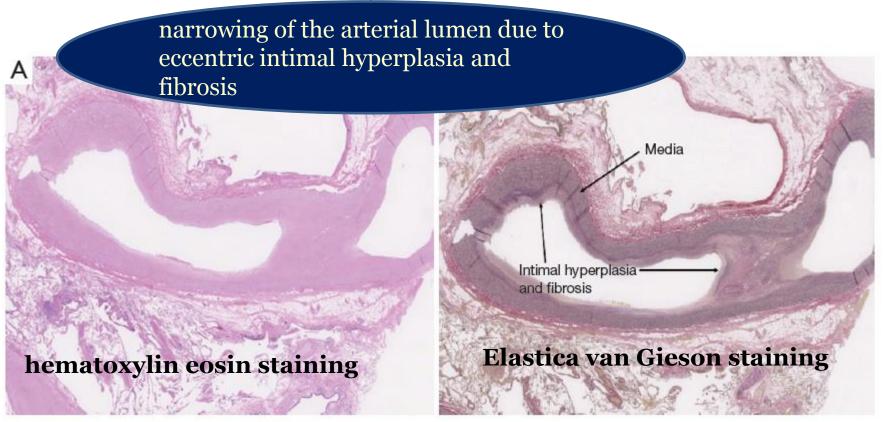

Other factors:

- Thromboxane
- Endothelin
- Angiotensin
- PG-F_{2alpha} and PG-E2
- Low pH of mixed venous blood


Othe factors:

- Prostacyclin
- Bradykinin
- PG-E1

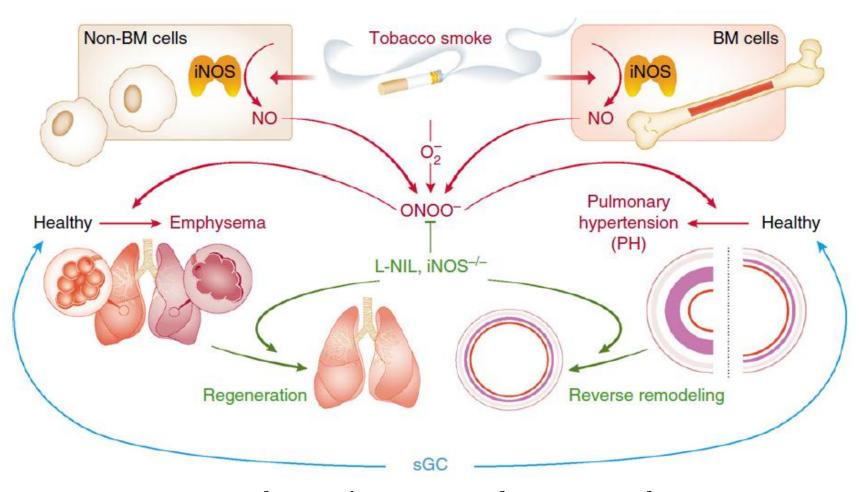
Singh I The American J of Med 2016



Similarities in vascular remodeling between PH-COPD and PAH?

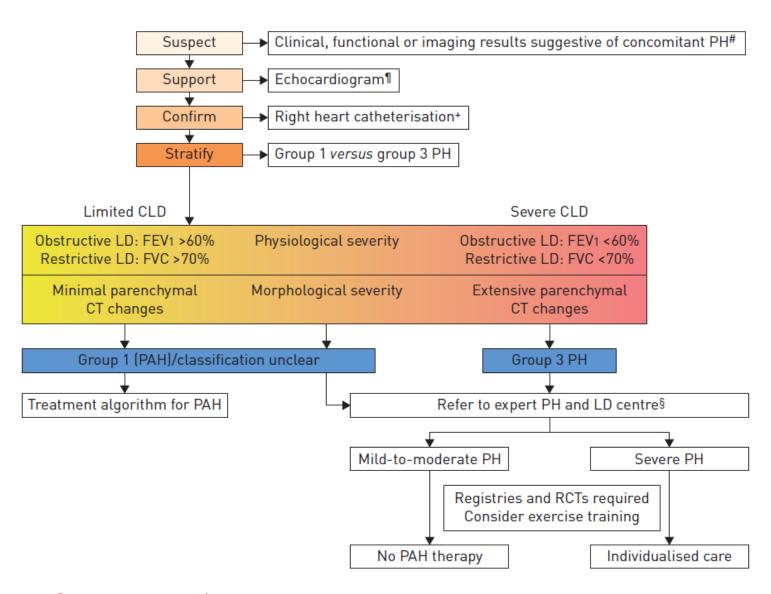
Pulmonary hypertension in chronic obstructive pulmonary disease and emphysema patients

Vascular remodeling in an emphysema patient with PH



Courtesy of Dr. B. Vrugt, Institute of Pathology, University Hospital Zurich Switzerland.

Isabelle Opitz, Silvia Ulrich J Thorac Dis. July,2018;10


Chronic Obstructive Pulmonary Disease and Pulmonary Vascular Disease

A Comorbidity?

STATE OF THE ART Norbert Weissmann Annals ATS December 2018

Detection of PH in CLD

Detection of PH in CLD

Suspect Clinical, functional or imaging results suggestive of concomitant PH#

Symptoms

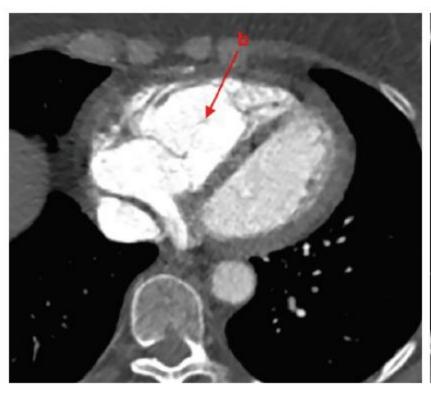
- 1. Dyspnea
- 2. Loud P2
- 3. Signs of RHF, NT-proBNP

Pulmonary function tests

- 1. DLCO<50% pred
- 2. Elevated %FVC/%DLCO

Exercise test findings

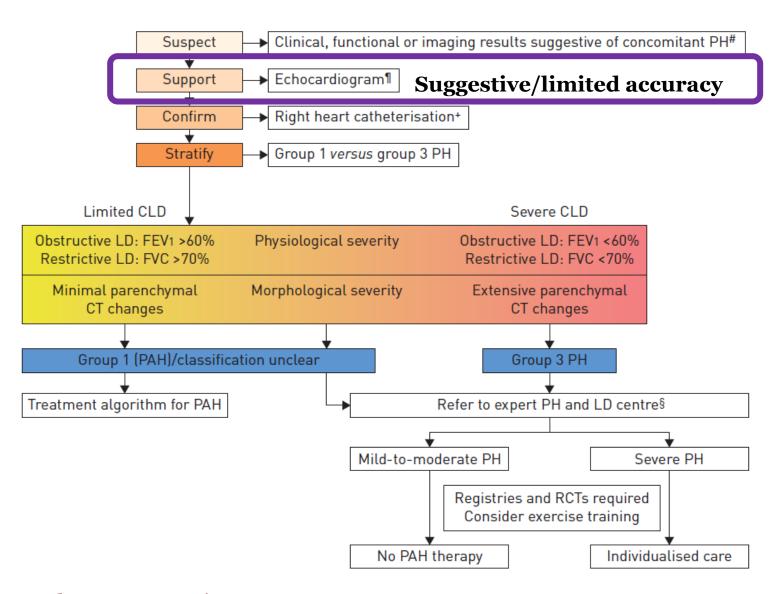
Imaging findings


Chest radiography AP and lateral

Isabelle Opitz, Silvia Ulrich J Thorac Dis. July,2018;10

CT systemic vascular characteristics

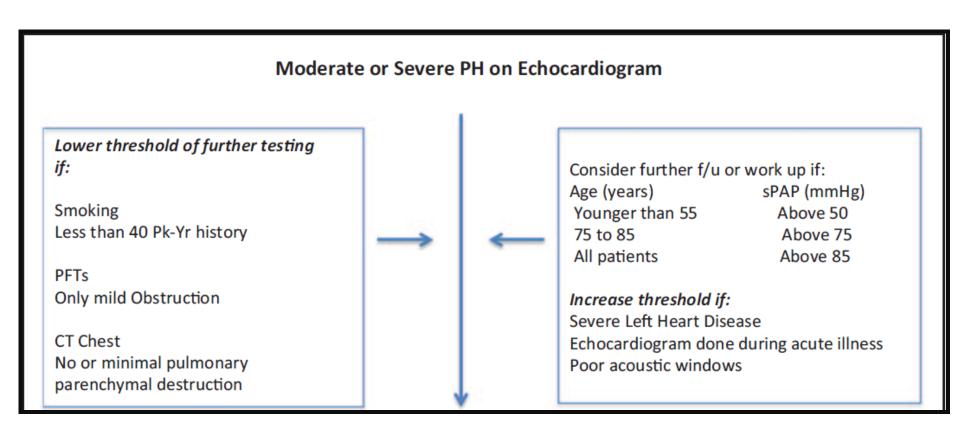
- a. enlargement of central pulmonary vessel
- b. enlargement and hupertrophy of RV



Pulmonary artery / aorta >1 Sensitivity = 70% Specificity = 92%

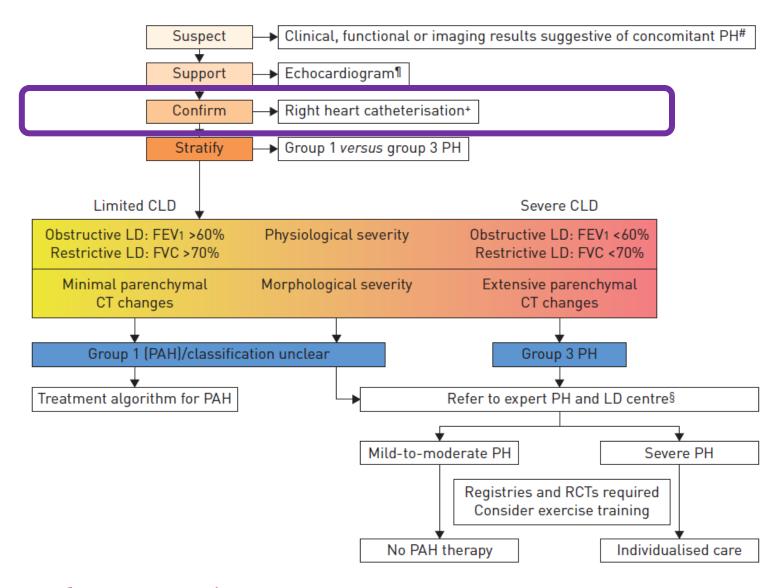
Isabelle Opitz, Silvia Ulrich J Thorac Dis. July,2018;10

Detection of PH in CLD



Ηχωκαρδιογραφική εκτίμηση Πνευμονικής Υπέρτασης σε ασθενείς με σοβαρή Πνευμονική νόσο

Patient Group/Finding	Sensitivity, % (95% CI)	Specificity, % (95% CI)	PPV, % (95% CI)	NPV, % (95% CI)
All patients*				
sPAP	85 (73 to 93)	55 (45 to 64)	52 (41 to 62)	87 (76 to 94)
RV findings†	82 (73 to 89)	57 (51 to 62)	39 (32 to 46)	90 (85 to 94)
OLD				
sPAP	76 (50 to 93)	65 (54 to 75)	32 (18 to 48)	93 (83 to 98)
RV findings	84 (67 to 95)	56 (49 to 62)	22 (15 to 30)	96 (91 to 99)
L D				
sPAP	85 (68 to 95)	17 (5 to 39)	60 (44 to 74)	44 (14 to 79)
RV findings	76 (61 to 87)	53 (40 to 67)	57 (43 to 69)	74 (58 to 86)


PPV indicates positive predictive value; NPV, negative predictive value; sPAP, systolic pulmonary artery pressure; RV, right ventricular; OLD, obstructive lung disease; and ILD, interstitial lung disease.

Arcasoy SM AJRCCM 2013 167: 735-40

K Chatterjee: Curr Opin Pulm Med 2017

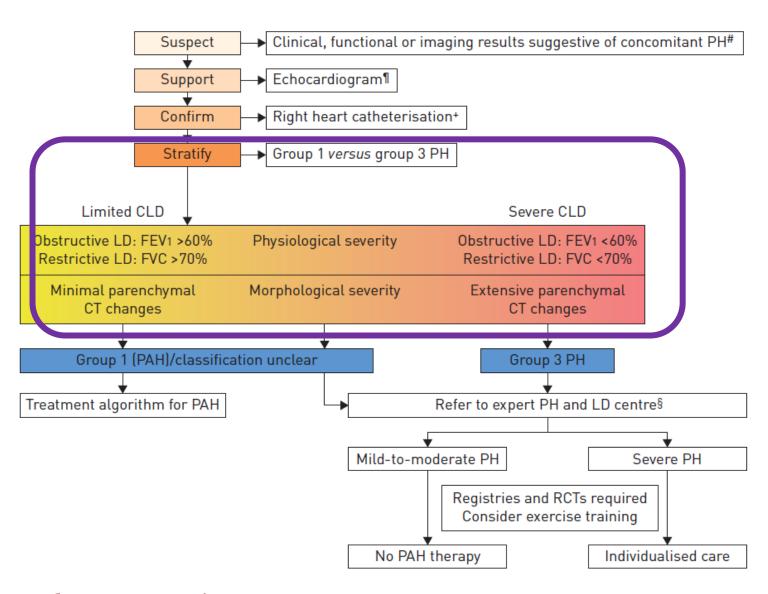
Detection of PH in CLD

Right Heart Catheterization in Chronic Nice Lung disease

- RHC remains the gold standard for the diagnosis of PH
- -suspicion of underlying PH does not always mandate RHC
- -RHC **should be performed** in patients with chronic lung disease
 - 1. Evaluation for lung transplantation
 - 2. Suspicion of left ventricular systolic/diastolic dysfunction
 - 3. Severe PH is suspected and further therapy or inclusion in clinical trials or registries are being considered.

-RHC may be considered:

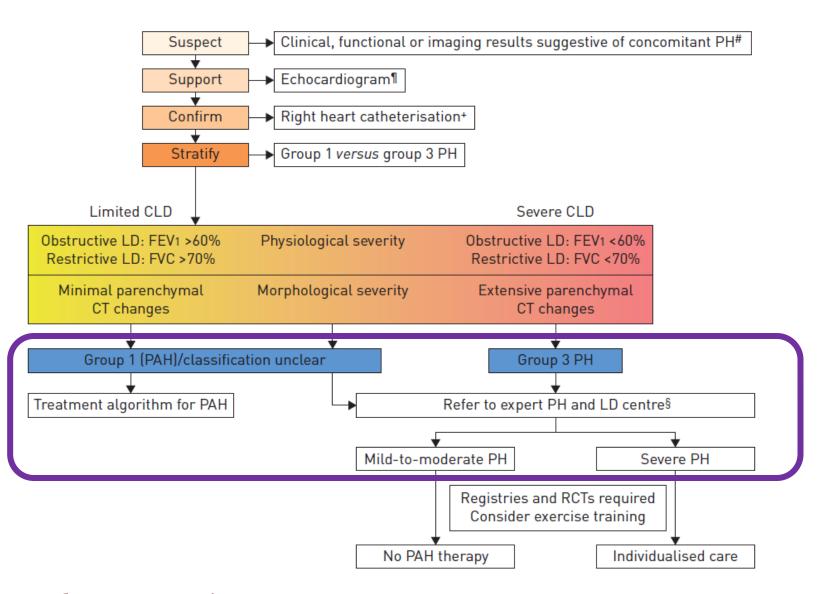
- 1. Clinical worsening, progressive exercise limitation and/or gas exchange abnormalities are disproportionate to ventilatory impairment.
- 2. When an accurate prognostic assessment is deemed sufficiently important


Definition for PH in the context of CLD-PH

- 1) CLD without PH (mPAP <21 mmHg, or mPAP 21–24 mmHg with pulmonary vascular resistance (PVR) <3 Wood Units (WU)).
- 2) CLD with PH (mPAP 21–24 mmHg with PVR ≥3 WU, or mPAP 25–34 mmHg) (CLD-PH).
- 3) CLD with severe PH (mPAP \geqslant 35 mmHg, or mPAP \geqslant 25 mmHg with low cardiac index (<2.0 L·min⁻¹·m⁻²)) (CLD-severe PH).

Technique: averaging of pressure values over several respiratory cycles.

A floating average over several breaths (without a breath hold) is suggested for measurement of mean pressures, including the pulmonary capillary wedge pressure SD. Nathan:Eur Respir J 2019; 53


Detection of PH in CLD

Criteria favouring group 1 versus group 3 pulmonary hypertension (PH)

Criteria favouring group 1 (PAH)	Testing	Criteria favouring group 3 (PH due to lung disease)						
Extent of lung disease								
Normal or mildly impaired: • FEV1 >60% pred (COPD) • FVC >70% pred (IPF) • Low diffusion capacity in relation to obstructive/restrictive changes	Pulmonary function testing	Moderate to very severely impaired: • FEV1 <60% pred (COPD) • FVC <70% pred (IPF) • Diffusion capacity "corresponds" to obstructive/restrictive changes						
Absence of or only modest airway or parenchymal abnormalities	High-resolution CT scan¶	Characteristic airway and/or parenchymal abnormalities						
	Haemodynamic profile							
Moderate-to-severe PH	Right heart catheterisation Echocardiogram	Mild-to-moderate PH						
	Ancillary testing							
Present	Further PAH risk factors (e.g. HIV, connective tissue disease, BMPR2 mutations, etc.)	Absent						
Features of exhausted circulatory reserve: • Preserved breathing reserve • Reduced oxygen pulse • Low CO/Vo ₂ slope • Mixed venous oxygen saturation at lower limit • No change or decrease in Paco ₂ during exercise	Cardiopulmonary exercise test+ $(P_{aco_2}particularly relevant in COPD)$	Features of exhausted ventilatory reserve: Reduced breathing reserve Normal oxygen pulse Normal CO/V'o ₂ slope Mixed venous oxygen saturation above lower limit Increase in P _a co ₂ during exercise						
Predominant obstructive/restrictive profile Predominant haemodynamic profile								

Detection of PH in CLD

2018/19

Treatment of PH in Lung Diseases Evidence for appropriate benefit to risk ratio of PAH approved drugs??

Recommendations	Classa	Level ^b
chocardiography is recommended for e non-invasive diagnostic assessment suspected PH in patients with lung sease	ı	С
eferral to an expert centre is commended ^d in patients with shocardiographic signs of severe PH ad/or severe right ventricular seanction	-	С
ne optimal treatment of the underlying ng disease, including long-term O_2 erapy in patients with chronic poxaemia, is recommended in tients with PH due to lung diseases	1	
eferral to PH expert center should be insidered for patients with signs of vere PH/severe RV failure for dividual-based treatment	lla	С
HC is not recommended for suspected H in patients with lung disease, unless erapeutic consequences are to be spected (e.g. lung transplantation, ternative diagnoses such as PAH or TEPH, potential enrolment in a clinical al)	=	
he use of drugs approved for PAH is not recommended in patients with PH due to lung diseases	Ш	U

Therapeutic trials focusing on PH-COPD

Meta-analysis: Chen et al, J Thorac Dis 2015 Meta-analysis: Prins et al Pulm Circ 2017

Chronic use of PAH-specific therapy in World Health Organization Group III Pulmonary Hypertension: a systematic review and meta-analysis

Kurt W. Prins, Sue Duval, Jeremy Markowitz, ...

First Published March 24, 2017

10													
Author	Symptomatic assessment		Treated-placebo difference		Post treatment	P value	Oxygena		Treat	ed-placebo	Post treatment	P value	
Author	assessifient		difference		treatment	r value	assessiii	ent	dillel	ence	rost treatment	r value	
COPD-PH													
Blanco	St. George's Respir Questionnaire	atory	1.3 (-3.5 -6.9)		-	0.526	Arterial tension	oxygen on (mmHg)	Study	Year		Δ6MWD	Weight
Rao	NR		NR		NR	NR	NR						
Valerio	St. George's Respir Questionnaire	atory	NR		C: 43 ± 13 T: 46 ± 13	NS	Arterial tension	oxygen on (mmHg)	Valerio	2009		84 (-14, 182)	11.0%
Goudie	St. George's Respir Questionnaire	atory	-2.64 (-6.53 - I	.15)	NR	0.17	NR		Rao	2011		152 (110, 194)	20.0%
Vitulo	QoL		9.85 (9.07–10.63)	1—	0.04	Arterial tension	oxygen on (mmHg)	Blanco	2013	*	-5 (-24, 14)	23.5%
						PVR Baseline	5-2	Post Treatment	Goudie	2014	+	0.4 (-12, 13)	24.1%
Author	PA Pressure Baseline (mm Hg)	Post Tre Pressure	atment (mm Hg)	p-valu	e	(dynes s/cm ⁵ o Wood Units)	or	(dynes s/cm ⁵ or Wood Units)		2016	++	19 (-15, 53)	21.4%
COPD-PH	3000								Overall (-squared = 92.2%, p = 0.000)			
Blanco	P: 26 (26,27), n = 5 T: 31 (29,33), n = 9	NR		NR		NR		NR		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Rao	P: $48 \pm 13 \; (PASP)$ T: $53 \pm 12 \; (PASP)$	P: 44 ± I	2 T: 4I \pm 8	0.025 treatn	(pre/post nent)	NR		NR					
Valerio	P: 36 ± 5 9 (mPAP) T: 37 ± 5 (mPAP)	P: 38 \pm 7 T: 31 \pm 6	,	0.002 treatn	(pre/post nent)	P: 420 ± 170 T: 442 ± 192		P: 435 ± 189 T: 250 ± 170			-25 0 50 100 15 Mean difference in change in 6	50 200 MWD (meters)	
Goudie	P: $30.8 \pm 6.8 \text{ (mPAP)}$ T: $30.1 \pm 5.2 \text{ (mPAP)}$		7.5 (mPAP) 5.2 (mPAP)		(mean difference en groups)	NR		NR		DUA			
Vitulo	P: $39.1 \pm 2.9 \text{ (mPAP)}$ T: $39.3 \pm 2.1 \text{ (mPAP)}$		2.9 (mPAP) 2.3 (mPAP)	NS (d in cha	ifference nge)	P: 6.3 ± 0.8 T: 7.01 ± 0.6		P: $6.4 \pm .08$ T: 5.72 ± 0.6		0.04 (difference in change of P\	/R).		

Assessment of symptomatic burden and oxygenation changes.

Hemodynamic effects of PAH-specific therapy.

Exersice capacity (6MWD)

COPD pts: studies included > 20 pts

Outcome

1. Effect on pulmonary hemodynamics

- 1. Long-term use of PAH-targeted therapy improves pulmonary haemodynamics in COPD patients with PH, as shown in two different meta-analyses.
- 2. Beneficial haemodynamic effects with long-term PAH therapy, assessed by RHC, have been demonstrated with both sildenafil and bosentan

2. Effect on exercise tolerance, symptoms and quality of life

1. The effect of PALL 1. with COPD-PH is less

Taken together, the available studies do not provide clear evidence that the effect of PAH-targeted therapy on pulmonary haemodynamics in COPD-PH translates into an improvement in exercise tolerance and symptoms

3. Effects on oxygenation

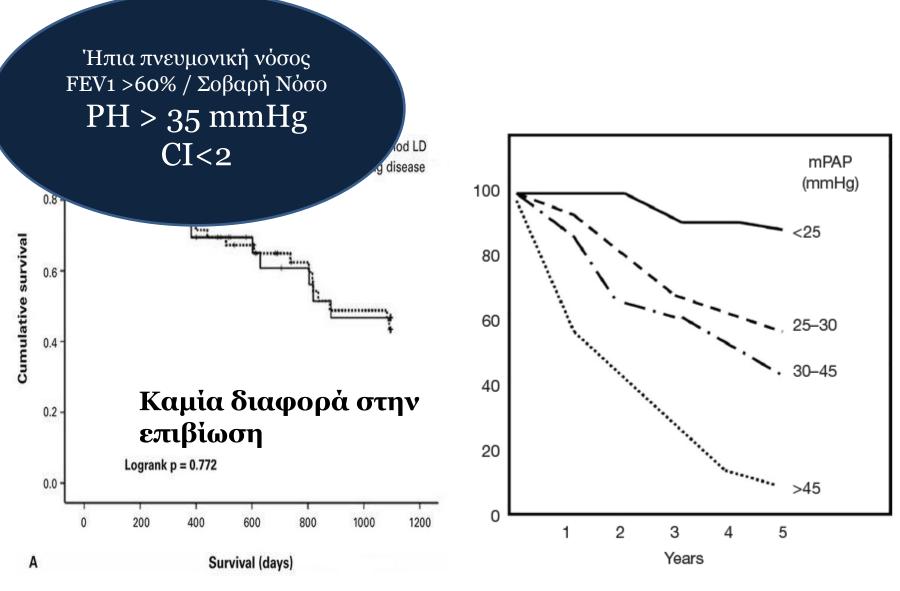
- 1. Evidence for a long-term benefit of PH therapy in COPD-PH is heterogeneous
 - 1. deterioration of gas exchange with the long-term use of bosentan or sildenafil
 - 2. no change was observed in others using sildenafil or tadalafil and rarely resulted in treatment withdrawal
- 2. Reduction in oxygenation related to pulmonary vasodilation might be compensated for by an increased CO that may maintain or even improve tissue oxygen delivery, especially with exercise

2018/19

Treatment of PH in Lung Diseases Evidence for appropriate benefit to risk ratio of PAH approved drugs??

General

- 1. Treatment of underlying disease
- 2. No established vascular therapy except for LTOT in COPD
- 3. Evidence from 3 studies that rehab improves exercise capacity in CLD-PH
 - 4. Rational for use PAH approved therapy?
 - PH contributes to limitation of exercise capacity
 - PH contributes to shortage of life expectancy?
 - Vascular abnormalities contribute to bronchial/parenchymal disease progression

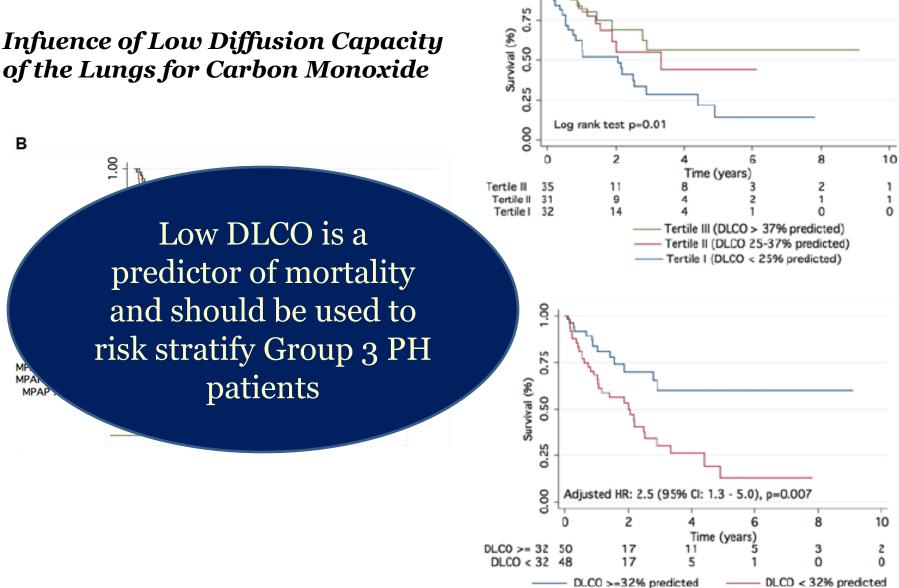

Recommendations	Class ^a	Level ^b
chocardiography is recommended for e non-invasive diagnostic assessment suspected PH in patients with lung sease	1	С
eferral to an expert centre is commended ^d in patients with chocardiographic signs of severe PH id/or severe right ventricular rsfunction	1	С
ne optimal treatment of the underlying ng disease, including long-term O_2 erapy in patients with chronic poxaemia, is recommended in tients with PH due to lung diseases	1	С
eferral to PH expert center should be ensidered for patients with signs of vere PH/severe RV failure for dividual-based treatment	lla	С
HC is not recommended for suspected H in patients with lung disease, unless erapeutic consequences are to be spected (e.g. lung transplantation, ternative diagnoses such as PAH or TEPH, potential enrolment in a clinical al)	III	С
he use of drugs approved for PAH is not recommended in patients with PH due to lung diseases	Ш	С

Clinical relevance

Effect of PH on Prognosis

AND

Quality of life



Funke M, 2016 Swiss Med Wkly

I Opitz, J Thorac Dis. July,2018;10

Survival in Pulmonary Hypertension due to Chronic Lung Disease:

of the Lungs for Carbon Monoxide

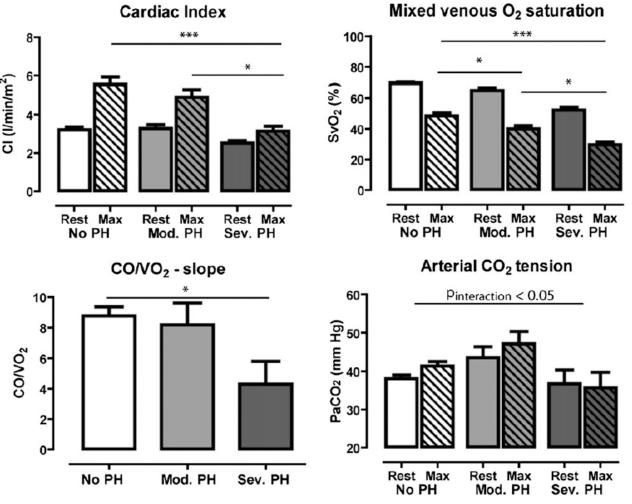
Rose L, Journal of Heart and Lung Transplantation 11/2018

Clinical relevance

Effect of PH on Prognosis

AND

Quality of life

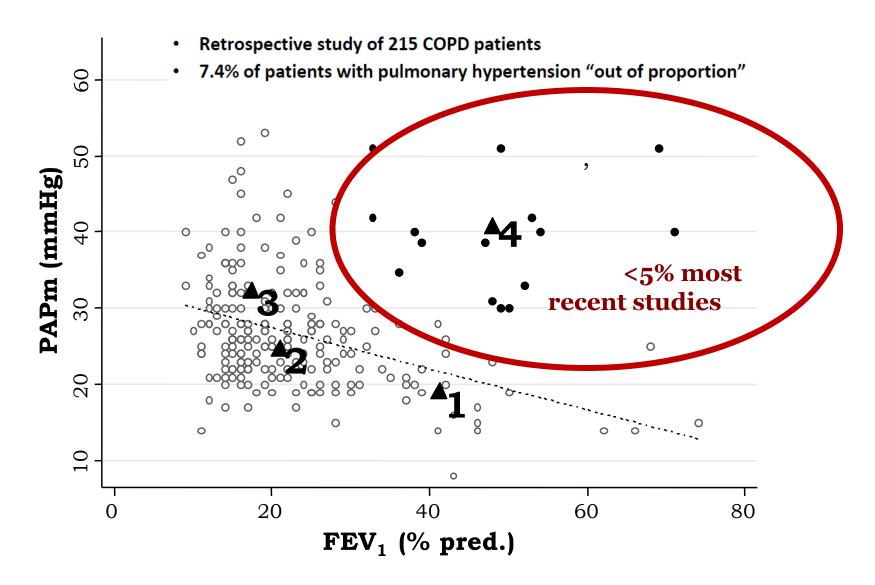

Pulmonary hypertension at exercise in COPD:

does it matter?

Robert Naeije, Bart G. Boerrigter

Ventilatory and cardiocirculatory exercise profiles in COPD: the role of pulmonary hypertension. COPD pts

COPD pts
GOLD II – IV
no PH (Mpap< 25 mm Hg)
moderate PH (mPAP= 25-39 mm Hg), and
severe PH (mPAP> 40 mm Hg)



PH-induced circulatory limitation to exercise in patients with COPD and an mPAP of 40 mm Hg.

In patients with COPD without or with moderate PH, the exercise profile indicates a circulatory reserve and a predominantly ventilatory limitation to exercise

nocitized no · onon fore 1101 145(1)

COPD and Pulmonary Hypertension

Thabut, Chest 2005; 127: 1531

Pulmonary hypertension at exercise in COPD: does it matter?

Robert Naeije, Bart G. Boerrigter

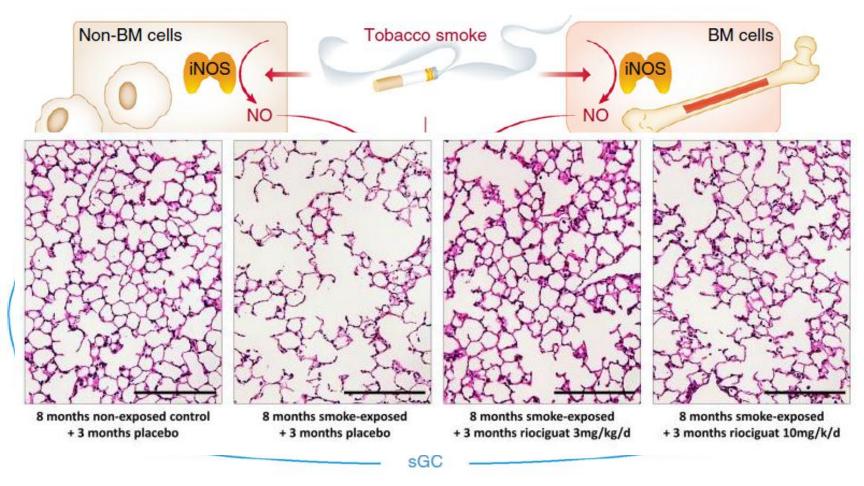
- The right ventricle limits exercise capacity only in COPD patients with "out of proportion pulmonary hypertension":
 - Preserved ventilatory reserve
 - Hypocapnia, hypoxaemia and
 - Very low mixed venous oxygenation at maximal exercise
- Only these patients might be candidates for trials of targeted therapies with drugs shown efficacious in PAH.

Japan: 5.3 million patients with COPD / 50,000 COPD patients with PH **Early Cor-pulmonale**

"pulmonary vascular COPD phenotype" 'Early Cor-pulmonale'

less severe airflow limitation,
hypoxaemia,
very low diffusing capacity of the lung for
carbon monoxide (DLCO),
normo- or hypocapnia and
a cardiovascular exercise limitation profile

Nathan S 2019 Proceedings


•Pulm

Any Future for New Therapies?

Seiichiro Sakao: J Resp Inves March 2019.03

Chronic Obstructive Pulmonary Disease and Pulmonary Vascular Disease

A Comorbidity?

STATE OF THE ART Norbert Weissmann Annals ATS December 2018

Riociguat for treatment of pulmonary hypertension in COPD – a translational study

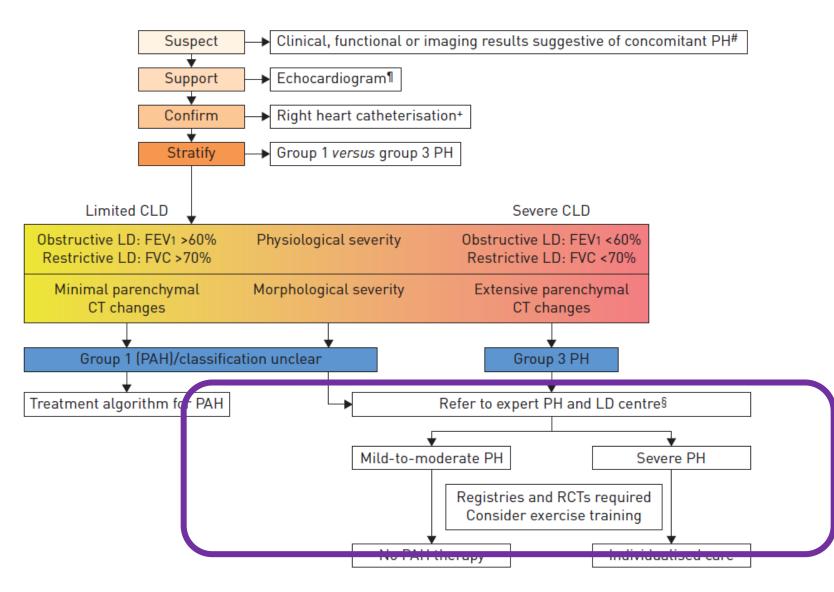
- It has been suggested that patients with circulatory, but not ventilatory limitation during exercise might profit most from vasoactive treatment of PH.
- However, large clinical trials are missing to answer the question which patients profit most from therapy.
- Moreover, an approach addressing both, vascular and alveolar remodeling, as well as bronchial obstruction would be desirable. In this regard, it has been shown recently in animal models of smoke-induced emphysema that treatment with activators of the nitric oxide/cyclic guanoside monophosphate (NO-cGMP) pathway can reduce PH and emphysema when applied in a preventive approach.
 - NO activates the soluble guanylate cyclase (sGC) to produce cGMP that activates cGMP-dependent protein kinases that can modulate:
 - apoptosis, proliferation, migration, and extracellular matrix protein expression

Pichl A: Eur Respir J 2019; in press

Riociguat for treatment of pulmonary hypertension in COPD – a translational study

		Post-Treatment	Post-Treatment						
	Pre-Treatment	(4-7 month after start of	(21-29 months after						
		riociguat	start of riociguat)						
Blood gases									
pO ₂ (mmHg)	67 ± 6	$74 \pm 4 \text{ (p=0.939)}$	75 ± 9 (p=0.927)						
pCO ₂ (mmHg)	38 ± 7	39 ± 3 (p=0.997)	40 ± 4 (p=0.990)						
O ₂ -suppl. (1/min)	2.00 ± 2.00	2.00 ± 2.00 (p=1.000)	2.00 ± 2.00 (p=1.000)						
Lung function parameters									
Rtot%	225 ± 17	174 ± 37* (p=0.039)	240 ± 55 (p=0.737)						
			#(p=0.005)						
FEV1%	56 ± 3	63 ± 7 (p=0.956)	59 ± 3 (p=0.997)						
FEV1/VC%	59 ± 3	60 ± 5 (p=0.999)	52 ± 3 (p=0.945)						
RV/TLC%	56 ± 3	53 ± 5 (p=0.973)	$52 \pm 6 \text{ (p=0.954)}$						
DLCO/SB%	31 ± 8	40 ± 10 (p=0.895)	41 ± 11 (p=0.888)						
Echocardiographic parameters									
sPAP (mmHg)	69 ± 6	63 ± 5 (p=0.943)	61 ± 10 (p=0.920)						
TAPSE (mm)	16 ± 2	18 ± 3 (p=0.998)	$20 \pm 2 \text{ (p=0.986)}$						

Conclusion


'Severe pulmonary hypertension' is replacing the term 'out of proportion'

Trials, decisions
on
individualized patient care
should be made in the context of
expert centers

associated PH.

• life-preserving measures should only be considered as a bridge to transplantation. Patients in any of

Detection of PH in CLD

Japan: 5.3 million patients with COPD / 50,000 COPD patients with PH

"pulmonary vascular COPD phenotype" 'Early Cor-pulmonale'

less severe airflow limitation,
hypoxaemia,
very low diffusing capacity of the lung for
carbon monoxide (DLCO),
normo- or hypocapnia and
a cardiovascular exercise limitation profile

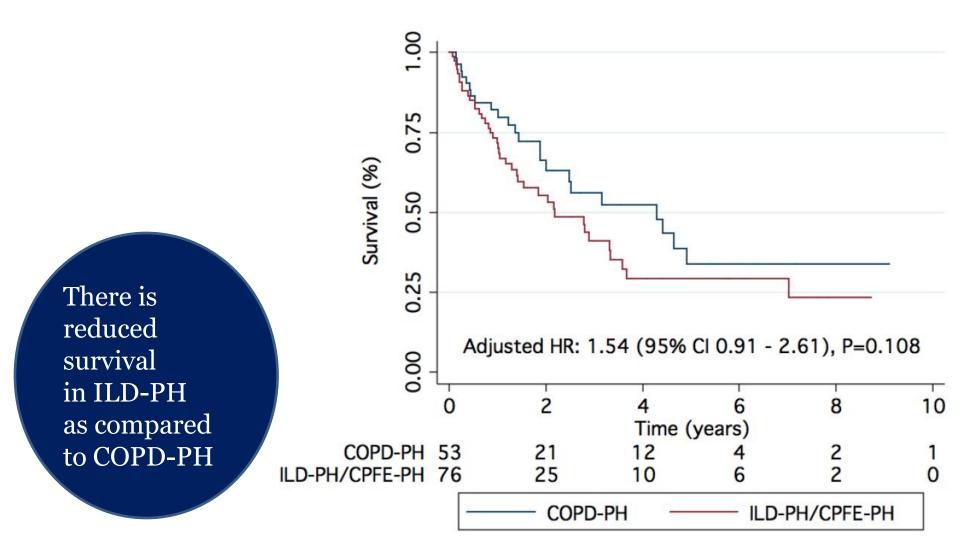
Nathan S 2019 Proceedings

•Pulm

Any Future for New Therapies?

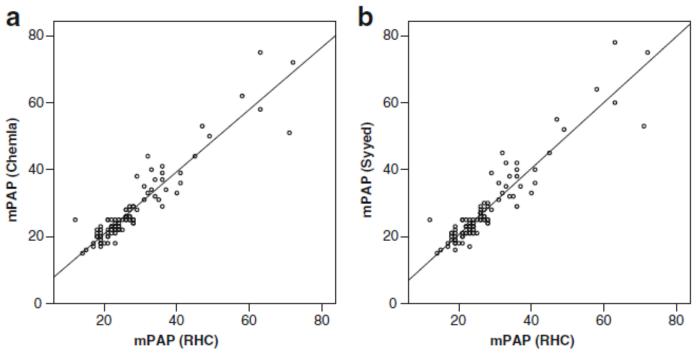
Seiichiro Sakao: J Resp Inves March 2019.03

Conclusion


- 'Severe pulmonary hypertension' is replacing the term 'out of proportion' pulmonary hypertension in hypoxic pulmonary diseases.
- 'Severe pulmonary hypertension' is defined as mPAP at least 35 mmHg or CI less than 2.0 l/min/m2 on RHC.
- 'Severe pulmonary hypertension' is quite rare (1-3% of severe COPD patients) in obstructive lung diseases.
- Currently, there are no conclusive data to support or completely reject the possibility of use of specific PAH therapies in COPD patients, especially with mild-to moderate pulmonary hypertension.
- Patients with mild-to-moderate COPD by PFTs and CT chest, and evidence of severe pulmonary hypertension by RHC, may be treated with specific PAH therapies similar to WHO group-I PAH guidelines.

Proceedings of the 6th World Symposium on Pulmonary Hypertension Conclusion

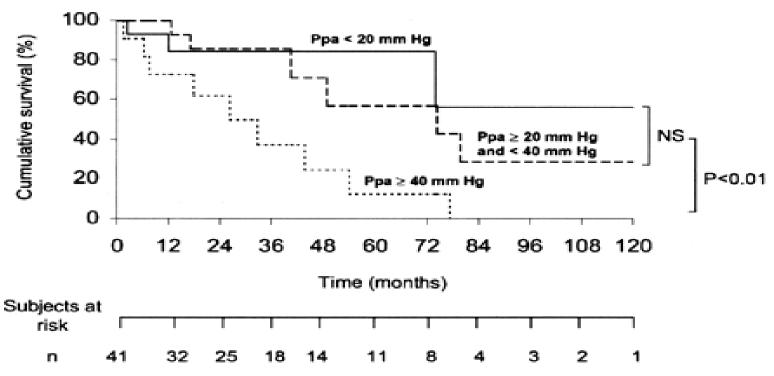
- Although preliminary evidence suggests that currently available vasoactive medications may have a benefit in COPD-PH patients with mPAP ≥35 mmHg, further studies are required before PAH therapies can be recommended.
 - Therefore, these patients should be a target population for larger prospective studies.
- This does not preclude COPD patients with lower mPAP being enrolled in future studies, especially if the cardiac index is low or PVR is significantly elevated.


Survival in Pulmonary Hypertension due to Chronic Lung Disease:

Infuence of Low Diffusion Capacity of the Lungs for Carbon Monoxide

Rose L, Journal of Heart and Lung Transplantation 11/2018

Correlation between RHC-measured mPAP and echocardiographic-estimated mPAP using the Chemla formula (a) and the Syyed formula (b)


It has been suggested that both Chemla formula (mPAP = sPAP \times 0.61 + 2 mmHg) and

Syyed formula (mPAP = sPAP \times 0.65 + 0.55 mmHg) might accurately estimate the mPAP

Cottini et al. Critical Care (2017) 21:115

Disproportionate PH

Strasbourg group

Chaouat AJRCCM 2005; 172:189

2018 classification

- Chronic lung disease (CLD) with
- CLD with PH>/= 20mmHg an O2 if needed)
 - Stick to the standard definition
 - RHC needed to assessment of of

Lower PA clinically significant in COPD/DPLD

If

\$\\$\\$\\$\\$CI or

RV dysfunction

- CLD with severe PH (mPAP>/=35mm.)
 - Rationale:
 - at this level hemodynamics contribute to exercise limitation
 - minor subpopulation with 'vascular phenotype' (in COPD <3%)
 - optimal target population in future RCT addressing PH in chronic lung disease

Chronic obstructive pulmonary disease and the early stage of cor pulmonale: A perspective in treatment with pulmonary arterial hypertension approved drugs

Στο ρεβ αρχίζει αναφερονατο 2 μελετεες

Summary of studies identified for systematic review and meta-analysis

Author	PH definition	Treatment	Dose	Duration	Placebo (n)	Treated (n)	Mean age (years)	Sex M:F
COPD-PH								
Blanco	Echo estimated PA systolic $>$ 34 mmHg or RHC mPAP \geq 25 mmHg	Sildenafil	20 mg TID	3 months	27	24	P: 65 ± 8 T: 66 ± 8	P: 26:5 T: 28:1
Rao	Echo estimated PA systolic pressure >40 mmHg	Sildenafil	20 mg TID	12 weeks	18	15	P: 63.6 ± 6.7 T: 60.7 ± 8.5	NR
Valerio	$RHC\ mPAP \geq 25\ mmHg$	Bosentan	125 mg BID	18 months	16	16	P: 65 ± 10 T: 66 ± 9	P: 12:4 T: 13:3
Goudie	Echo estimated PA systolic pressure >30 mmHg or PA-AT < 120 ms	Tadalafil	10 mg daily	12 weeks	57	56	P: 70 ± 7 T: 68 ± 8	P: 40: 20 T: 42:18
Vitulo	RHC mPAP \geq 35 mmHg if FEV ₁ \geq 30% after bronchodilator or mPAP \geq 30 mmHg if FEV ₁ >30% after bronchodilator	Sildenafil	20 mg TID	16 weeks	10	18	P: 64.1 \pm 11 T: 66.4 \pm 6.5	P: 8:2 T: 13:5

PAH-specific therapy in World Health Organization Group III Pulmonary Hypertension: a systematic review and meta-analysis

<u>Kurt W. Prins</u> <u>Sue Duval</u> <u>Jeremy Markowitz</u>

Seiichiro Sakao: J Resp Inves March 2019.03

Chronic obstructive pulmonary disease and the early stage of corpulmonale:

A perspective in treatment with pulmonary arterial hypertension approved drugs

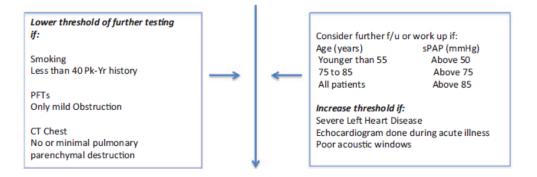
The off-label use of PAH-approved drugs
The Nippon COPD Epidemiology Study showed that there are
approximately 5.3 million patients with COPD in Japan [20],
and the prevalence of PH is reported to be 1.1% [21], suggesting
that there are approximately 50,000 COPD patients with PH in
Japan. In an actual clinical setting, there are several patients in
whom PAH-approved drugs are used because of Japanese
universal health insurance.

However, there is concern about the present situation regarding the off-label use of PAHapproved drugs without evidentiary support. Actually, there are some cases in which PAH-approved drugs are likely to be effective for COPD with PH. Thus, there is an urgent need for a prospective study aiming to distinguish the cases in which such treatment can be effective in a clinical setting.

Effects of rehab in PH-chronic lung disease

- Evidence from 3 studies that rehab improves exercise capacity in CLD-PH
- No adverse effect reported in these studies
- Further studies needed:
 - Reproducible in larger trials with focus on PH-chronic lung disease?
 - Differences between various underlying lung diseases?
 - Long-term effects?
 - Impact on survival?

Dowman LM Thorax 2017 Oki Y Int J Chr Ob Pul Dis 2016


COPD-PH

CPET: contribution of pulmonary vascular disease for dyspnea and activity limitation.

- Parameters suggesting inadequate intrapulmonary gas exchange.
- Oxy-hemoglobin desaturation.
- Hyper-circulatory and hyper-ventilatory response due to elevated inspiratory neural drive.
- Decrease maximum oxygen consumption (VO2 max).
- Variable combination of fatigue and dyspnea as limiting symptoms.

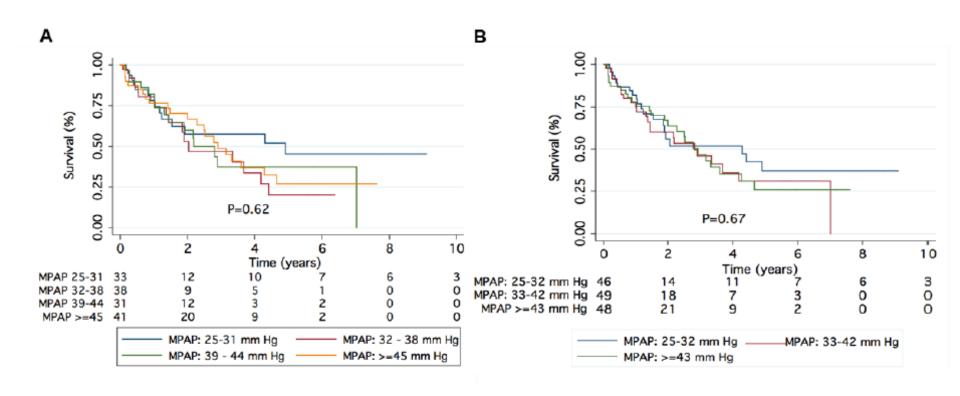
K Chatterjee: Curr Opin Pulm Med 2017

Moderate or Severe PH on Echocardiogram

Does patient has known left heart disease or current Echocardiogram shows predominant left heart disease, e.g..

- Low LVEF
- AS, MS, AR, MR
- Left atrial dilation more than right atrial dilation

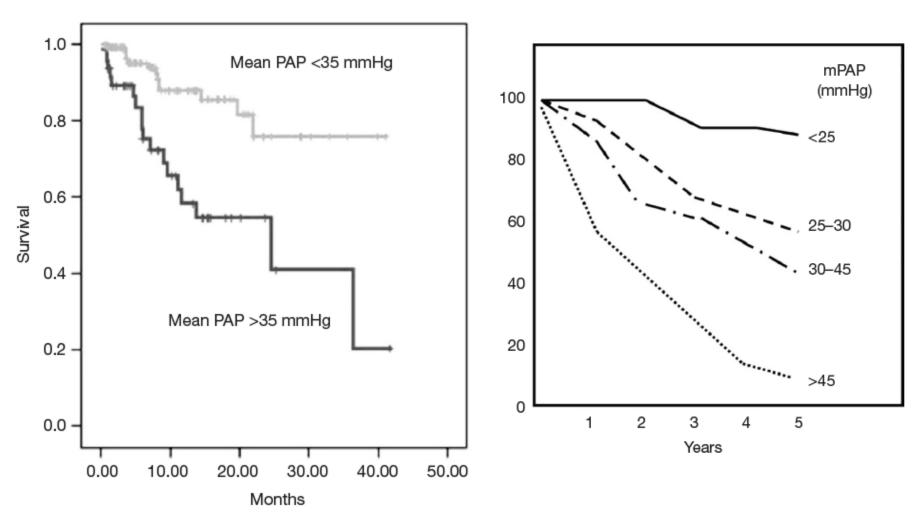
Does patient has known condition or risk factors for WHO Group I PAH, e.g..


- Connective Tissue Disorder
- Family History of PAH
- Cirrhosis or Portal Hypertension
- HIV / AIDS
- Delayed ASD / VSD closure
- Cocaine, Amphetamines use

Does patient has known condition or risk factors for WHO Group IV PAH, e.g..

- Intermediate or high probability
 V/Q scan
- H/O PE, DVT

Survival in Pulmonary Hypertension due to Chronic Lung Disease



There was no difference in survival when Group 3 PH cohort was divided in tertiles and quartiles of mPAP.

Rose L, Journal of Heart and Lung Transplantation 11/2018

Effect of mPAP on survival in patients with COPD according to severity of mPAP increase

Note the marked negative effect on survival as PH becomes severe

Isabelle Opitz, Silvia Ulrich J Thorac Dis. July, 2018;10

PAH targeted therapy in COPD 2 meta-analysis and recent small trials

- Improving of hemodynamics in severe PH-COPD (mPAP>35mmHg)
- Preliminary evidence that may translate into improvement of exercise tolerance and quality of life, in particular in severe PH-COPD
- Gas exchange may initially deteriorate with minor relevance upon long term use
 - Differences between inhalative and systemic route of application
- Large RCTs (are missing)should focus be on the 'vascular phenotype COPD' (mPAP>35mmHg, circulatory exercise limitation)
- This does not preclude to focus on COPD patients with lower mPAP being enrolled in future studies